
SIMULATION OF QUANTUM COMPUTATIONS ON CLASSICAL COMPUTERS 

Adina BĂRÎLĂ 

“Ștefan cel Mare” University of Suceava 

str.Universitătii nr.13, RO-720229 Suceava 

adina@eed.usv.ro 

In the last years the importance of quantum computing has significantly increased due  to both continuously shrinking of the size of silicon-based integrated circuits and the results in quantum  algorithms development. 

Quantum computing devices are not available outside of research labs so quantum computing simulators represent important instruments in  the development and testing of those algorithms. We present several quantum 

algorithms and their simulations using a quantum programming language, Quantum Computation Language (QCL)  
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INTRODUCTION 
  Quantum computing  is the new field of science which uses quantum phenomena to perform 

operations on data. The goal of quantum computing is to find algorithms that are considerably faster than 

classical algorithms solving the same problem . 

 The fundamental unit of quantum information  is quantum bit or qubit. The general state of a qubit is 

a linear combination - or a superposition- of the basis states |0  and |1 : 

|  = |0  + |1  

where  and  are complex numbers which satisfy the relation: 

| |2 + | |2 = 1 

A qubit can exist as a zero, a one, or simultaneously as 0 and 1. A system consisting of n qubits has 2n 

basis states, writen |00.. 0 , …, |1 1 .. 1 . The general state of an n-qubit system is a superposition of all 2n 

basis states: 

 

 

 

where: │ k〉 = │kn-1〉 . . . │k1〉│k0〉    and 

 

Like the single-qubit system, a n-qubit register can store simultaneously all basic states. 

 Measurement collapses a quantum state into one of the possible basis states, so measurement is a 

destructive operation. If a qubit is in the state |  = |0  + |1  and a measure is performed, it obtains 0 

with probability 2 (the state of qubit become |0  ) and 1 with probability 2 (the state of qubit become|1  

). 

 A unitary transformation that acts on a small number of qubits is called a quantum gate. A quantum 

gate has the same number of inputs and outputs.  

 

Hadamard gate:                                                             Not (X)  gate: 

                                       

 

Controlled-NOT (CNOT) gate:                                    SWAP gate: 
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SIMULATORS OF QUANTUM COMPUTERS 
 computer programs which can be run on a classical machine to simulate the actions of a quantum 

computer  

CLASSIFICATION 

• programming languages for quantum computers (Quantum Computation Language – QCL, Quantum 

Superpositions,  Quantum Entanglement, Quantum Fog, QDD) 

• quantum compilers (Qubiter, GQC) 

• quantum circuit simulators, or gate-level simulators (QCAD, QuaSi, JaQuzzi) 

• quantum computer emulators (QCE, QSS) 

• pedagogical software (Quantum Turing machine simulator, QTM simulator, Quantum Search Simulator) 

QUANTUM PROGRAMMING LANGUAGES - key characteristics: 

 completeness - every current and future quantum algorithm can be written in the language 

 separability - easy separation of classical computations from quantum computations  

 based on familiar concepts and constructs  

 high-level of abstraction 

 hardware independent 

Quantum Computation Language – QCL 

 high level language for quantum programming 

 open-source 

 runs under Linux operating system 

 C or Pascal like syntax 

 a classical control language with functions, flow-control, interactive I/O and various classical data types 

(int, real, complex, boolean, string) 

 2 quantum operator types: general unitarian (operator) and reversible pseudo-classic gates (qufunct) 

 inverse execution, allowing for on-the-fly determination of the inverse operator though caching of 

operator calls 

 various quantum data types (qubit registers) for compile time information on access modes (qureg, 

quconst, quvoid, quscratch) 

 convenient functions to manipulate quantum registers (q[n] - qubit, q[n:m] - substring, q&p - combined 

register) 

 quantum memory management (quheap) allowing for local quantum variables 
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QUANTUM ALGORITHMS 

 

//Uf operator simulated by CNOT and 

//NOT(X) gates 

qufunct Uf(quvoid x, quvoid y, int n) { 

  if (n==2) or (n==3) { 

    CNot(y, x); 

  } 

  if (n==3) or (n==4) { 

    X(y); 

  } 

} 

 

procedure simon2() { 

  qureg x[2]; qureg y[2]; int m; 

  { 

  reset; 

  //Hadamard gate 

  H(x);  

  //Uf transformation 

  CNot(y[0], x[0]); 

  //Hadamard gate  

  H(x);  

  //the x register is measured 

  measure x,m; 

  print “The measured value is: ", m; 

  } until (m!=0); 

} 

procedure grover(int n) { 

  // number of qubits  

  int l=floor(log(n,2))+1;      

 //number of iterations  

  int nr=ceil(pi/8*sqrt(2^l));  

  int m; int i; qureg q[l]; qureg f[1]; 

  { 

    reset; 

    H(q);             // Hadamard gate 

    for i= 1 to nr {  // Grover iterations 

      query(q,f,n);   // oracol operator 

      CPhase(pi,f);      

      !query(q,f,n);     

      diffuse(q);     // diffusion operator 

    } 

    measure q,m;        // measure 

    print “The result of mesurement: ",m; 

  } until m==n; 

  reset;                 

} 

Fig.1. The quantum circuit for Deutsch-Jozsa 

algorithm 

Fig.2. The quantum circuit for Simon algorithm 

The implementation of Uf transformation for 

Deutsch algorithm in QCL QCL implementation of Simon algorithm in the case n=2 

The implementation of Grover algorithm in QCL 

Fig.3. The quantum circuit for Grover algorithm 












