
SIMULATION OF QUANTUM COMPUTATIONS ON CLASSICAL COMPUTERS

Adina BĂRÎLĂ

“Ștefan cel Mare” University of Suceava

str.Universitătii nr.13, RO-720229 Suceava

adina@eed.usv.ro

In the last years the importance of quantum computing has significantly increased due to both continuously shrinking of the size of silicon-based integrated circuits and the results in quantum algorithms development.

Quantum computing devices are not available outside of research labs so quantum computing simulators represent important instruments in the development and testing of those algorithms. We present several quantum

algorithms and their simulations using a quantum programming language, Quantum Computation Language (QCL)

 UGAL I N V E N T

 Prima ediție a Salonului "UGAL INVENT" 2014

 Universitatea „Dunărea de Jos” din Galați, România

 8 – 10 Octombrie 2014

ACKNOWLEDGMENT: This paper was supported by the project "Sustainable performance in doctoral and post-doctoral research

PERFORM - Contract no. POSDRU/159/1.5/S/138963", project co-funded from European Social Fund through Sectorial

Operational Program Human Resources 2007-2013

INTRODUCTION
 Quantum computing is the new field of science which uses quantum phenomena to perform

operations on data. The goal of quantum computing is to find algorithms that are considerably faster than

classical algorithms solving the same problem .

 The fundamental unit of quantum information is quantum bit or qubit. The general state of a qubit is

a linear combination - or a superposition- of the basis states |0 and |1 :

| = |0 + |1

where and are complex numbers which satisfy the relation:

| |2 + | |2 = 1

A qubit can exist as a zero, a one, or simultaneously as 0 and 1. A system consisting of n qubits has 2n

basis states, writen |00.. 0 , …, |1 1 .. 1 . The general state of an n-qubit system is a superposition of all 2n

basis states:

where: │ k〉 = │kn-1〉 . . . │k1〉│k0〉 and

Like the single-qubit system, a n-qubit register can store simultaneously all basic states.

 Measurement collapses a quantum state into one of the possible basis states, so measurement is a

destructive operation. If a qubit is in the state | = |0 + |1 and a measure is performed, it obtains 0

with probability 2 (the state of qubit become |0) and 1 with probability 2 (the state of qubit become|1

).

 A unitary transformation that acts on a small number of qubits is called a quantum gate. A quantum

gate has the same number of inputs and outputs.

Hadamard gate: Not (X) gate:

Controlled-NOT (CNOT) gate: SWAP gate:

1

0

2
n

k

k kc

1
2 1

0

n

k

k kc

SIMULATORS OF QUANTUM COMPUTERS
 computer programs which can be run on a classical machine to simulate the actions of a quantum

computer

CLASSIFICATION

• programming languages for quantum computers (Quantum Computation Language – QCL, Quantum

Superpositions, Quantum Entanglement, Quantum Fog, QDD)

• quantum compilers (Qubiter, GQC)

• quantum circuit simulators, or gate-level simulators (QCAD, QuaSi, JaQuzzi)

• quantum computer emulators (QCE, QSS)

• pedagogical software (Quantum Turing machine simulator, QTM simulator, Quantum Search Simulator)

QUANTUM PROGRAMMING LANGUAGES - key characteristics:

 completeness - every current and future quantum algorithm can be written in the language

 separability - easy separation of classical computations from quantum computations

 based on familiar concepts and constructs

 high-level of abstraction

 hardware independent

Quantum Computation Language – QCL

 high level language for quantum programming

 open-source

 runs under Linux operating system

 C or Pascal like syntax

 a classical control language with functions, flow-control, interactive I/O and various classical data types

(int, real, complex, boolean, string)

 2 quantum operator types: general unitarian (operator) and reversible pseudo-classic gates (qufunct)

 inverse execution, allowing for on-the-fly determination of the inverse operator though caching of

operator calls

 various quantum data types (qubit registers) for compile time information on access modes (qureg,

quconst, quvoid, quscratch)

 convenient functions to manipulate quantum registers (q[n] - qubit, q[n:m] - substring, q&p - combined

register)

 quantum memory management (quheap) allowing for local quantum variables

11

11

2

1
H 01

10
X

0100

1000

0010

0001

CNOT

1000

0010

0100

0001

SWAP

QUANTUM ALGORITHMS

//Uf operator simulated by CNOT and

//NOT(X) gates

qufunct Uf(quvoid x, quvoid y, int n) {

 if (n==2) or (n==3) {

 CNot(y, x);

 }

 if (n==3) or (n==4) {

 X(y);

 }

}

procedure simon2() {

 qureg x[2]; qureg y[2]; int m;

 {

 reset;

 //Hadamard gate

 H(x);

 //Uf transformation

 CNot(y[0], x[0]);

 //Hadamard gate

 H(x);

 //the x register is measured

 measure x,m;

 print “The measured value is: ", m;

 } until (m!=0);

}

procedure grover(int n) {

 // number of qubits

 int l=floor(log(n,2))+1;

 //number of iterations

 int nr=ceil(pi/8*sqrt(2^l));

 int m; int i; qureg q[l]; qureg f[1];

 {

 reset;

 H(q); // Hadamard gate

 for i= 1 to nr { // Grover iterations

 query(q,f,n); // oracol operator

 CPhase(pi,f);

 !query(q,f,n);

 diffuse(q); // diffusion operator

 }

 measure q,m; // measure

 print “The result of mesurement: ",m;

 } until m==n;

 reset;

}

Fig.1. The quantum circuit for Deutsch-Jozsa

algorithm

Fig.2. The quantum circuit for Simon algorithm

The implementation of Uf transformation for

Deutsch algorithm in QCL QCL implementation of Simon algorithm in the case n=2

The implementation of Grover algorithm in QCL

Fig.3. The quantum circuit for Grover algorithm

