# QUANTUM CIRCUITS FOR QUANTUM WALKS ON THE HYPERCUBE

Adina BĂRÎLĂ

InfoTech 2015 - Bulgaria

# Quantum computing

- Quantum computing is a field of science which investigates the computational power of computers based on quantum mechanical principles.
- ➤ Recent research has proved the potential of quantum computing systems to solve problems that are considered unsolvable due to the necessary computing effort.

# Qubit

- The fundamental unit of quantum information is called quantum bit or qubit.
- A qubit can be  $|0\rangle$  or  $|1\rangle$  (basis states) or a superposition:

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle \tag{1}$$

where

$$|\alpha|^2 + |\beta|^2 = 1 \tag{2}$$

If a measure is performed, it obtains

- o with probability  $|\alpha|^2$  (the state of the qubit becomes  $|o\rangle$ )
- 1 with probability  $|\beta|^2$  (the state of the qubit becomes  $|1\rangle$ )

# Quantum register

- A collection of n qubits is called a quantum register of size n.
- The state of the quantum register is :

$$|\psi\rangle = \sum_{k=0}^{2^{n}-1} C_k |k\rangle \tag{3}$$

where

$$| k \rangle = | k_{n-1} \rangle \dots | k_{1} \rangle | k_{0} \rangle$$
 (4)

$$\sum_{k=0}^{2^{n}-1} |C_k|^2 = 1 \tag{5}$$

If a measure is performed it obtains  $|k\rangle$  with probability  $|C_k|^2$  and the state of the system becomes  $|k\rangle$ .

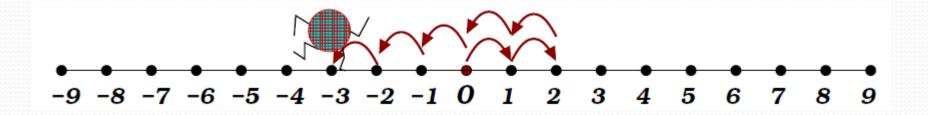
# Quantum gates

- Evolution of a quantum system can be described by a unitary transformation U called gate, in analogy to classical logic gates. Unlike the logic gates, a quantum gate has the same number of inputs and outputs.
- A one-qubit elementary gate is described by a 2x2 matrix:

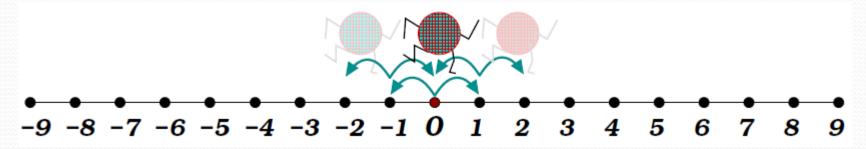
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

which transforms  $| o \rangle$  into a  $| o \rangle + c | 1 \rangle$  and  $| 1 \rangle$  into b  $| o \rangle + d | 1 \rangle$ .

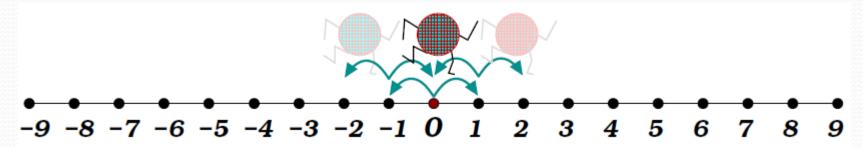
# Quantum gates


Hadamard H

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 - one-qubit


Controlled-NOT (CNOT) 
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2-qubit gate


# Classical random walk

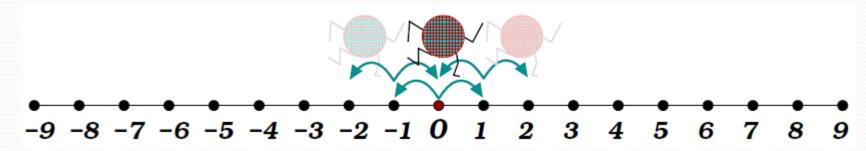


A walker is placed at the origin (o) of a line numbered from –N to N. The walker tosses an unbiased coin and moves either left or right by one position depending on outcome.



- ➤ Since quantum operations must be reversible , "toss" must be performed by a unitary operator called *coin operator*.
- If one obtains "head" after tossing, the walker "moves" from the position described by the vector  $|n\rangle$  to the position described by  $|n+1\rangle$ . If one obtains "tail" the walker "moves" from  $|n\rangle$  to the position described by  $|n-1\rangle$ .



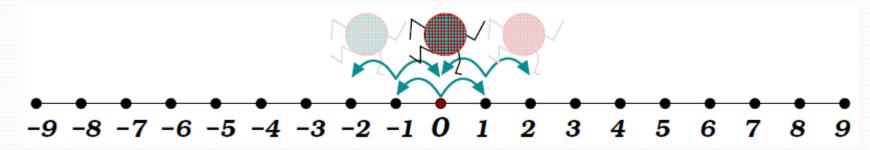

• the position of the walker is a vector in a Hilbert space  $H_P$  with the following computational basis

$$\{ |x\rangle : x \in \mathbb{Z} \}$$

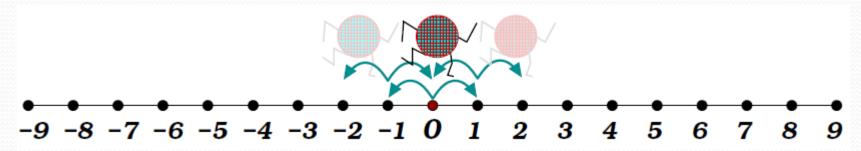
• The quantum "coin" is a vector in a Hilbert space  $H_{\mathbb{C}}$ , with the following computational basis

$$\{|0\rangle, |1\rangle\}$$

• The Hilbert space of the quantum system is  $H = H_P \otimes H_C$ .




The most used coin for unidimensional quantum walks is the Hadamard operator:


$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H|\mathbf{o}, \mathbf{x}\rangle = \frac{1}{\sqrt{2}} (|\mathbf{o}, \mathbf{x}\rangle + |\mathbf{1}, \mathbf{x}\rangle)$$
$$H|\mathbf{1}, \mathbf{x}\rangle = \frac{1}{\sqrt{2}} (|\mathbf{o}, \mathbf{x}\rangle - |\mathbf{1}, \mathbf{x}\rangle)$$

The shift from  $|n\rangle$  to  $|n+1\rangle$  or  $|n-1\rangle$  is described by a unitary operator, called *shift operator* S. This acts as follows:

$$S|o\rangle|n\rangle = |o\rangle|n+1\rangle$$
  
 $S|1\rangle|n\rangle = |1\rangle|n-1\rangle$ 



In the classical random walk, the walker can only go in one direction at a time. In contrast, in quantum walk he can go in both directions until the measuring operation is performed.



The algorithm which implements the quantum walk can be implemented as follows:

- 1.initialize the system
- 2.for every iteration
  - toss the coin
  - shift the position
- 3.perform measurement

# Discret time quantum walk on a regular graph

- The difference between the quantum walk on a regular graph and the quantum walk on the line is the Hilbert space of the quantum system.
- Let G = (V,E) be a regular undirected graph, where  $V = \{1,2,...N\}$  is the set of vertices and E is the set of edges. The Hilbert space of the quantum system is

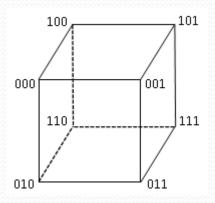
$$H = H_{\rm C} \otimes H_{\rm v}$$

where  $H_{\nu}$  is the vertices space which has the following computational basis

$$H_{\nu} = \{ |\nu\rangle : \nu \in \mathbb{Z}_{N} \}$$

where N is the number of vertices, and  $H_{\rm C}$  is the coin space and has the computational basis

$$H_C = \{ |k\rangle : k \in \mathbb{Z}_d \}$$


where *d* is the degree of every vertex.

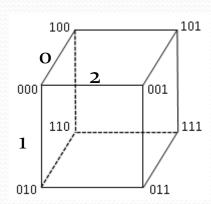
# Discret time quantum walk on a regular graph

The walker can move in any of *d* directions.

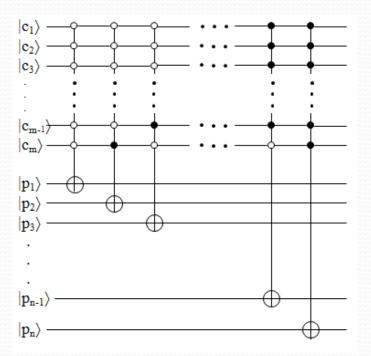
The shift operator S maps the state  $|k,v\rangle$  into  $|k,v_j\rangle$ , where the  $(v,v_j)$  is the j-th edge which connects the vertices v and  $v_j$ .

- The hypercube of dimension n is a regular graph with  $N = 2^n$  vertices.
- The every vertex degree is *n*.
- Vertices are labeled by n-bit strings and two vertices are adjacent if and only if their labels differ only by one bit.
- If two vertices differ by the *j*-th bit, the label of the edge connecting these vertices is *j*.




On a hypercube, the shift operator maps the state  $|k,v\rangle$  into  $|k,v_j\rangle$ , where the n-bit strings v and  $v_j$  differ by the j-th bit. So, the shift operator S can be represented as follows

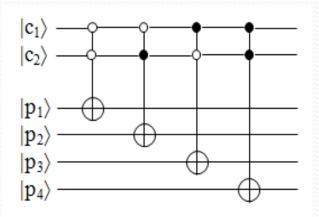
$$S|1\rangle|p_{1},p_{2},...,p_{n}\rangle = |1\rangle|p_{1}\oplus 1, p_{2},...,p_{n}\rangle$$


$$S|2\rangle|p_{1},p_{2},...,p_{n}\rangle = |2\rangle|p_{1}, p_{2}\oplus 1,...,p_{n}\rangle$$
...

$$S|n\rangle|p_1,p_2,...,p_n\rangle = |n\rangle|p_1,p_2,...,p_n\oplus 1\rangle$$

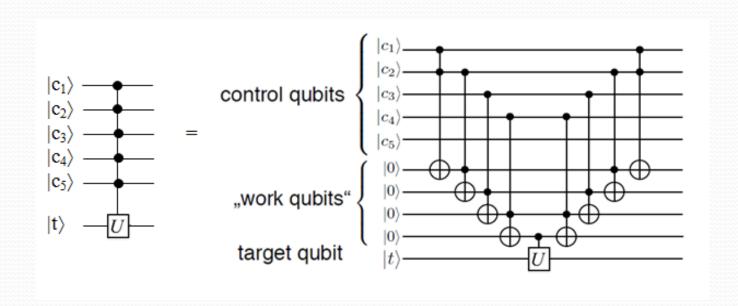
where  $\oplus$  denotes addition modulo two.




If n is a power of two, the action of this operator can be reproduced by  $(Controlled)^m$ -NOT quantum gates as shown in figure



where  $|c_1\rangle|c_2\rangle...|c_m\rangle$  is the coin state and  $|p_1\rangle|p_2\rangle...|p_n\rangle$  the position state (the vertex state).


```
procedure walk4(int steps) {
  qureg c[2]; //coin register
  qureq v[4]; //vertices register
  int i;
  int m1;
  int m2;
  for i=1 to steps {
    H(c); //Hadamard coin
    //the first gate
    Not(c);
    CCNot(c[0], c[1], v[3]);
    Not(c);
    //the second gate
    Not(c[1]);
    CCNot(c[0],c[1],v[2]);
    Not(c[1]);
    //the third gate
    Not(c[0]);
    CCNot(c[0], c[1], v[1]);
   Not(c[0]);
    //the last CCNOT gate
    CCNot(c[0], c[1], v[0]);
  measure c, m1;
  measure v, m2;
  print "m1 = ", m1, " m2 = ", m2;
```

The shift operator for the quantum walk on the hipercube of dimension 4:



The first gate flips the target qubit if and only if the control qubits are set to o.

In the case of n>4, the quantum circuit for the shift operator uses  $(Controlled)^m$ -NOT gates. Such gates can be implemented using 2(m-1) CCNOT gates and (m-1) ancilla qubits as follows



```
operator CmNOT (int m, qureq x, qureq y) {
  qureg a[m-1]; //ancilla qubits
  int i;
  CCNot(x[m-1], x[m-2], a[m-2]);
  for i=3 to m-1 {
    CCNot(x[m-i], a[m-i+1], a[m-i]);}
  for i=3 to m-1 step -1 {
    CCNot(x[m-i], a[m-i+1], a[m-i]);}
  CCNot(x[m-1], x[m-2], a[m-2]);
```

# Conclusions

- In the last years new model of quantum algorithms have apperead: the quantum walk based algorithms.
- Quantum walks present different behaviour than classical random walks.
- In absence of quantum devices, quantum computing simulators helps programmers to understand the constraints imposed by these devices.
   I presented a quantum circuit for the shift operator of a quantum walk on the hypercube
- I presented a QCL implementation of the quantum walk algorithm on the hypercube .

# Thank you!

ACKNOWLEDGMENT This paper was supported by the project "Sustainable performance in doctoral and post-doctoral research PERFORM - Contract no. POSDRU/159/1.5/S/138963", project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007-2013

This is a preliminary version of the InfoTech-2015 Conference Program and some changes could be made. The participants will get the official Conference Program during the On-Site Registration.

# International Conference InfoTech-2015 Thursday, 17<sup>th</sup> September 2015

# 13:30 - 14:00 (Hall 5)

### Official Opening Session

# **Opening Speech and Introduction**

*Prof. Radi Romansky, D.Sc.*Chairperson of the Organizing Committee (Bulgaria)

**Invited Keynote** 

# 14:00 - 15:00 (Hall 5)

# **Report Session**

Chairpersons: Prof. Radi Romansky, D. Sc. (Bulgaria) Prof. Plamen Mateev, Ph.D. (Bulgaria)

### Section 'A': Information Technologies

Specialized Information Technologies

# A01 A Reference Point Genetic Algorithm for Multi-Criteria Job Shop Scheduling Problems

Vassil Guliashki, Leonid Kirilov Institute of Information and Communication Technologies – BAS (Bulgaria

# A02 Comparative Analysis of the Electoral Distribution Methods in Bulgarian Voting Legislation

Iliya Goranov

Institute of Information and Communication Technologies – BAS (Bulgaria)

### A03 Design of Portable ECG Module

Valentina Markova, Ventseslav Draganov, Edy Velikov, Yasen Kalinin Technical University – Varna (Bulgaria)

### 15:00 - 15:40 (Foyer)

**Coffee Discussion** 

### 15:40 - 18:00 (Hall 5)

# **Report Session**

Prof. Vangel Fustik, Ph.D. (Rep. of Macedonia) Chairpersons: Assoc. Prof. Dimitar Tsanev, Ph.D. (Bulgaria)

### Section 'B': Information Security, Privacy and Network Applications

### Cloud Computing

#### B03 Large Scale Data Processing in the Cloud

André Martin, Christof Fetzer TU Dresden, Faculty of Computer Science, Dresden (Germany)

### Web Applications

#### B04 Web Applications Variability - Technological Trends and Models

Iliya Nedyalkov 1, Ivo Damyanov 2

- <sup>1</sup> University of National and World Economy, Sofia (Bulgaria)
- <sup>2</sup> South-West University, Blagoevgrad (Bulgaria)

### Section 'C': Intelligent Systems and Applications

### *Intelligent and Agent Systems*

#### C01 **Multi-Agent Framework for Intelligent Networks**

Georgi Tsochev 1, Roumen Trifonov 2, Radoslav Yoshinov 3

- <sup>1</sup> Technical University Sofia (Bulgaria)
- <sup>2</sup> Computer Systems Dept. at Technical University Sofia (Bulgaria)
- <sup>3</sup> Director of Telematics Laboratory at BA Sciences (Bulgaria)

#### C02 Step by Step Data Preprocessing for Data Mining. A Case Study Mirela Danubianu

"Stefan cel Mare" University of Suceava (Romania)

### Section 'D': Technologies for System Design

Computer Architectures and Automation of System Design and Research

#### D01 Quantum Circuits for Quantum Walks on the Hypercube

Adina Bărîlă

"Ştefan cel Mare" University of Suceava (Romania)

#### D02 Daily Optimal Operation of Power Plants in a Complex Power System

Sofija Nikolova-Poceva, Anton Causevski, Vangel Fustik

University "Ss. Cyril and Methodius", Skopje (Rep. of Macedonia)

20:00 - 23:00

Official Conference Diner

# International Conference InfoTech-2015 Friday, 18<sup>th</sup> September 2015

### 09:00 - 11:20 (Hall 5)

# **Report Session**

Chairpersons: Assoc. Prof. Roumen Trifonov, Ph.D. (Bulgaria) Assoc. Prof. Maria Nikolova, Ph.D. (Bulgaria)

### Section 'A': Information Technologies

### Actual Information Technologies

# A04 Griderages with Curvelinear Elements from Plane Circumference

Liliya Petrova

Dep. "Mechanics", VTU "T. Kableshkov" (Bulgaria)

### A05 IT Project "Challenges 3D-the Island"

Krasimir Bozhinov, Luchezar Ilieav, Ivan Dzhendov Secondary School of Maths and Science "Prof. Asen Zlatarov" (Bulgaria)

### A06 GetYourStats

Svetlin Yotov SiS Develop (Bulgaria)

### Section 'E': Technological Aspects of e-Governance and Data Protection

### Technological Aspects of e-Governance

### E01 Perspectives for ICT Applications in e-Democracy

Maria Nikolova

New Bulgarian University, Sofia (Bulgaria)

### e-Learning and Educational Aspects

# E04 E-Learning Project for Interoperability in the Context of Electronic Government

Milena Yorfanova<sup>1</sup>, Roumen Trifonov<sup>2</sup>, Slavcho Manolov<sup>3</sup>

- <sup>1</sup> TEZA (Bulgaria)
- <sup>2</sup> Department Computer Systems at Technical University Sofia (Bulgaria)
- <sup>3</sup> Chairman of the Board and CEO of Association EDIBUL (Bulgaria)

# E05 MOOCs and MOOC Platforms – Brief Survey, Innovations, Trends and Future

Tatyana Ivanova

Technical University of Sofia, CEE (Bulgaria)

### E06 Game Strategies in Education Process

Iglika Getova

University of Library Science and Information Technologies (Bulgaria)

# 11:20 - 12:00 (Foyer)

### **Poster Session and Coffee Discussion**

Chairperson: Assoc. Prof. Irina Noninska, Ph.D. (Bulgaria)

### Section 'A': Information Technologies

Web Applications

#### Design and Develop a Webgis Application for Android A07

P. Salla, S. Kolios, C. Stylios

Technological Educational Institute of Epirus (Greece)

# Section 'B': Information Security, Privacy and Network Applications

Information Security and Privacy

### B01 Security and Privacy Principles Realization in e-Learning Architecture Radi Romansky, Irina Noninska

Technical University of Sofia (Bulgaria)

#### B02 Formalization and Modelling of Secure Access in e-Learning Environment

Radi Romansky, Irina Noninska

Technical University of Sofia (Bulgaria)

# Section 'C': Intelligent Systems and Applications

*Intelligent and Agent Systems* 

#### C03 A Ridge Regression Approach for Quantum Machine Learning

Vanya Markova, Ventseslav Shopov Institute for SER – BAS (Bulgaria)

#### Approach for Quantum Clustering with Constrains C04

Vanya Markova, Ventseslav Shopov

Institute for SER – BAS (Bulgaria)

#### Approach for Reducing the Number of Attributes in Feature Engineering C05

Ventseslav Shopov, Vanya Markova

Institute for SER – BAS (Bulgaria)

#### C06 Fast Adaptive Learning Algorithm for Classification of Time Series with Sigmoid Treshold

Ventseslav Shopov, Vanya Markova, Velko Iltchev Institute for SER – BAS (Bulgaria)

Knowledge-Based Applications

#### FPGA Robotic System for Tracking Objects and Digital Image Processing C07

Rosen Spirov, Georgi Angelov

Technical University of Varna (Bulgaria)

# Section 'D': Technologies for System Design

Computer Architectures and Automation of System Design and Research

#### D03 Selection the Approximating Function for Isobologram Modeling

Kaloyan Yankov

Trakia University (Bulgaria)

# D04 Implementation of Hardware and Software Modules for Lab Robots

Andrei Hinkov, Mladen Milushev Technical University of Sofia (Bulgaria)

# D05 Dependence of Three-Phase Distribution Transformer Core Losses From Current Harmonics

Mihail Digalovski, Goran Rafajlovski, Krste Najdenkoski University "Ss. Cyril and Methodius", Skopje (Rep. of Macedonia)

### Section 'E': Technological Aspects of e-Governance and Data Protection

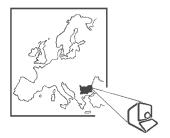
Technological Aspects of e-Governance

### E02 Standartozation of Electronic Identity Management

Slavcho Manolov<sup>1</sup>, Roumen Trifonov<sup>2</sup>, Radoslav Yoshinov<sup>3</sup>

- <sup>1</sup> Chairman of the Board and CEO of Association EDIBUL (Bulgaria)
- <sup>2</sup> Department Computer Systems at Technical University Sofia (Bulgaria)
- <sup>3</sup> Director of Telematics Laboratory at BAS (Bulgaria)

# E03 E-Government Applications for integrated Access to Complex Data Resources Using Multi-Agent Systems


Roumen Trifonov<sup>1</sup>, Slavcho Manolov<sup>2</sup>, Radoslav Yoshinov<sup>3</sup>

- <sup>1</sup> Department Computer Systems at Technical University Sofia (Bulgaria)
- <sup>2</sup> Chairman of the Board and CEO of Association EDIBUL (Bulgaria)
- <sup>3</sup> Director of Telematics Laboratory at BAS (Bulgaria)

### 12:00 (Foyer)

**Conference InfoTech-2015 Closing** 





InfoTech-2015