
OF APPLIED COMPUTER SCIENCE & MATHEMATICS

No 19 (9) / 2015

Journal of Applied Computer Science & Mathematics is published biannually by the “Ştefan cel
Mare” University of Suceava, Romania.
The goal of journal covers: mathematics, applied computer science, computer networks and
telecommunications. The authors are responsible for the content of their contributions.

Scientific Committee
Constantin CORDUNEANU – University of Texas and Arlington, USA
Heung GYOON RYU – Chungbuk National University, Republic of Korea
Ştefan HOLBAN – “Politehnica” University of Timişoara, Romania
Ştefan Gh. PENTIUC – “Ştefan cel Mare” University of Suceava, Romania
Maria Cristina PINOTTI – University of Perugia, Italy
Christiane GODET-THOBIE – University of Bretagne, France
Grigore SĂLĂGEAN – “Babeş - Bolyai” University of Cluj, Romania
Doru E. TILIUŢE – “Ştefan cel Mare” University of Suceava, Romania

Editor-in-Chief
Doru E. TILIUŢE

Assistant Editor
Paul PAŞCU

Editorial Board
Ionuţ BĂLAN, Tudor COLOMEISCHI, Eugenia IANCU, Leonard IURESCU, Valeriu LUPU,
Anamaria MACOVEI, Nicolae MORARIU, Paul PAŞCU, Tiberiu SOCACIU, Sorin VLAD

Contact
“Ştefan cel Mare” University of Suceava
Universităţii nr.13, Corp H
720229 Suceava, Romania

http://www.jacs.usv.ro
e-mail: dtiliute@seap.usv.ro
 paulp@seap.usv.ro

Journal of Applied Computer Science & Mathematics
ISSN: 2066-4273

OF APPLIED COMPUTER SCIENCE & MATHEMATICS

No 19 (9) / 2015

Editura Universităţii Suceava

Cover design and layout: Paul Paşcu
Copyright © JACSM

Suceava, 2015

TABLE OF CONTENTS

Foreword ... 7

What the Current System Development Trends tell us about Systems Development Methodologies:
Toward explaining SSDAM, Agile and IDEF0 Methodologies ...

9

Abdulla F. ALLY, Zhang NING

Strength Pareto Evolutionary Algorithm using Self-Organizing Data Analysis Techniques 16
Ionuţ BĂLAN

Quantum Computing - A new Implementation of Simon Algorithm for
3-Dimensional Registers ...

23

Adina BĂRÎLĂ

An Evaluation of CAPM’s validity in the Romanian Stock Exchange .. 31
Camelia COLESCU, Elena-Ariadna PAPUC

Improving the Security of Internet Banking Applications
by Using Multimodal Biometrics ..

37

Cătălin LUPU, Vasile-Gheorghiţă GĂITAN, Valeriu LUPU

Evolutionary Approach Based on Active Edges Detection for Images Segmentation 43
Slatnia SIHEM, Kazar OKBA, Arab KHAOULA

A Proposed Method for Pattern Classification with HMM in the Context
of Supervised Learning ...

50

Ştefan Gheorghe PENTIUC, Ştefania - Iuliana ŞOIMAN

Author’s Index ... 57

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

7

Foreword

A New Tool for Researchers
ResearchGate – The Largest Free Professional Network for Researchers

Creating a social network is not a revolutionary idea anymore. There are social networks on
every subject nowadays: music, film, cars or only for socializing with friends. What about a social
network targeting a specific group of people like researchers and scientists?

Researchers often meet with obstacles delaying their research progress, even if there has
eventually already been found a solution somewhere else in the world. In order to facilitate the
progress in science by sharing knowledge all over the world, was launched in 2008 ResearchGate,
the largest academic scientific network, by three young researchers.

The Online Platform gathers more the 800.000 researchers and scientists all over the world.
It's founders, researchers themselves, knew researchers need and designed the site according to this.
Users have the opportunity not only to find fellow researchers and collaborate, but also to find
relevant literature, to create discussion groups on their research interests, to find jobs in their field
or to publish their papers. “Our scientific community connects scientists and researchers from
Africa, South America or Russia, countries between which there has never been a scientific
collaboration before.”, says Ijad Madisch, founder and CEO of ResearchGate.

ResearchGate is specially designed for the needs of scientists: starting from the profile,
containing information about researchers projects, publications etc. to the semantic search algorithm
in the similar abstract search, finding related articles within a database of more than 30 million
documents. For example, by tipping in “computer science” you get more than 50 researchers in this
field, more than 25 discussion groups, as well as more than 10.000 publications. Hence
ResearchGate provides a collaborative working space without any spatially or temporarily borders.

To discover and benefit from ResearchGate facilities go to www.researchgate.net

Editorial Board

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

 57

Author’s Index

ALLY F. Abdulla, 9

BĂLAN Ionuţ, 16

BĂRÎLĂ Adina, 23

COLESCU Camelia, 31

GĂITAN Vasile - Gheorghiţă, 37

KHAOULA Arab, 43

LUPU Cătălin, 37

LUPU Valeriu, 37

NING Zhang, 9

OKBA Kazar, 43

PAPUC Elena-Ariadna, 31

PENTIUC Ştefan - Gheorghe, 50

SIHEM Slatnia, 43

ŞOIMAN Ştefania - Iuliana, 50

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

 23

Quantum Computing - A new Implementation of Simon Algorithm for
3-Dimensional Registers

Adina BĂRÎLĂ

“Ștefan cel Mare” University of Suceava, Romania
adina@eed.usv.ro

Abstract–Quantum computing is a new field of science aiming
to use quantum phenomena in order to perform operations on
data. The Simon algorithm is one of the quantum algorithms
which solves a certain problem exponentially faster than any
classical algorithm solving the same problem. Simulating of
quantum algorithms is very important since quantum hardware
is not available outside of the research labs. QCL (Quantum
Computation Language) is the most advanced implemented
quantum computer simulator and was conceived by Bernhard
Ömer. The paper presents an implementation in QCL of the
Simon algorithm in the case of 3-dimensional registers.

Keywords: quantum computing, quantum gate, quantum

algorithm.

I. INTRODUCTION

Quantum computing is a new field of science whose origin
is the Richard Feynman’s idea for constructing a computer to
simulate the quantum systems [1]. Introduced in the early
1980’s, quantum computing investigates the computational
power of computer based on quantum mechanical principles
and wants to find algorithms faster than classical algorithms
solving the same problem. David Deutsch introduced two
models for quantum computation: a quantum version of
Turing machine [2] and quantum circuits [3]. He
demonstrated that the universal quantum computer can do
things that the universal Turing machine cannot. He also
demonstrated that quantum gates can be combined to achieve
quantum computation in the same way that Boolean gates can
be combined to achieve classical computation.

David Deutsch invented the first quantum algorithm which
solves a computational problem in a more efficient way that
classical computation. He presented an example which
showed that a single quantum computation may suffice to
decide whether a given one-bit function is constant or
balanced. The Deutsch-Jozsa algorithm was designed in 1992
to maximally illustrate the computational advantage of
quantum computing over classical computing. Other notable
algorithms were developed by Simon and Vazirani. But the
most important results in the field of quantum computing are
considered the Shor’s and the Grover’s algorithms. In 1994,
Peter Shor described a polynomial time quantum algorithm
for factoring integers[4] and in 1996 Lov Grover invented the
quantum database search algorithm which achieved quadratic

speedup for the classic problem of database search [5]. From
those years, the research in quantum computing field has
accelerated, computer scientists trying to build quantum
computers and find other quantum algorithms.

This paper aims to present an original implementation of
Simon algorithm based on Quantum Computation Language
(QCL). Section II presents basic concepts of quantum
computation. Section III introduces Simon algorithm and
section IV presents a QCL implementation of this . Section V
draws some conclusion and future work.

II. QUANTUM COMPUTATION – BASIC CONCEPTS

The fundamanetal unit of quantum information is called

quantum bit or qubit [6]. A qubit is a physical system which
has two basis states, conventionally written |0 and |1,
corresponding to the classical values 0 and 1. Unlike the
classical bit, the general state of a qubit is a linear
combination – or a superposition – of the basis states:

|ψ = α|0 + β|1 (1)

where the amplitudes α and β are complex numbers such that:

|α|2+|β|2=1 (2)

In other words, a qubit can exist as a zero, a one, or

simultaneously as both 0 and 1 (when both α and β are
nonzero). Formally, a quantum state is a unit vector in a
Hilbert space.

A system consisting of n qubits has 2n basis states and its
general state is a superposition of all basis states:







1

0

2
n

k
k kc (3)

where:

011 kkkk n  (4)

with |kj represents the state of qubit j and 011 kkkn  (or

011 kkkn  or 011 ,,, kkkn ) represents the tensor

 Computer Science Section

 24

product 011 kkkn   . The amplitudes ck are

complex numbers such that:

1
2 1

0

2 




n

k
kc (5)

Like the single-qubit system, a n-qubit register can store
simultaneously all the basis states. A state of a n-qubit
register is an element in the space Hn = HH. . .H (tensor
product).

Evolution of a quantum system can be described by a
unitary transformation U. A unitary transformation that acts
on a small number of qubits is called a gate. A quantum gate
has the same number of inputs and outputs. A one-qubit
elementary gate is described by a 2x2 matrix:











dc

ba
U (6)

which transforms |0 into a|0+b|1 and |1 into c|0+d|1. The
Hadamard (H) and the Pauli (X,Y,Z) gates are examples of
quantum gates that act on a single qubit:





















01

10

11

11

2

1
XH (7)


















 


10

01

0

0
Z

i

i
Y (8)

The most important two-qubit gate is the CNOT (controlled-
not gate). It has two input qubits, the control and the target
qubit. The target qubit is flipped only if the control qubit is
set to 1. The matrix form of this gate is:





















0100

1000

0010

0001

CNOT (9)

and the circuit representation is represented in fig.1.

CNOT is a generalization of the classical XOR gate, since
its action may be summarized as |x,y → |x, yx, where  is
addition modulo two, which is the same as XOR.

Fig. 1 The CNOT gate

Generally, if U is a one-qubit gate with matrix
representation:











1110

0100

xx

xx
U (10)

then the controlled-U gate is a two-qubit gate with matrix
representation:





















1110

0100

00

00

0010

0001

)(

xx

xx
UC (11)

The first qubit is the control qubit.

The SWAP gate is the quantum generalisation of the
CROSSOVER classical gate. It swaps the quantum states of
the qubits. The matrix representation is:





















1000

0010

0100

0001

SWAP (12)

The Cph (controlled phase) gate acts on two qubits and it

has no classical equivalent.





















)exp(000

0100

0010

0001

)(





i

U cph
 (13)

An important three-qubit gate is the CCNOT (controlled-
controlled-not) gate. It has two control qubits and a target
qubit. The target qubit is flipped only if the control qubits are
set to 1. The matrix form of CCNOT gate is given in eqn. 14
and the circuit representation is shown in fig. 2.



































01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

CNOT
 (14)

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

 25

Fig. 2 The CCNOT gate

Measurement is the only nonreversible operation which
can be applied to a quantum state. Measurement collapses a
quantum state into one of the possible basis states, so
measurement is a destructive operation. If a qubit is in the
state |ψ = α|0 + β|1 and a measure is performed, it obtaines
0 with probability α2 (the qubit’s state becomes |0) and 1
with probability β2 (the qubit’s state becomes |1).

III. SIMON ALGORITHM

A. Overview

Daniel Simon [7] proposed the following problem: let f be

a function of the form:

f: {0,1}n → {0,1}n

for a positive integer n. The function f is promised to have

the property that there exists a string s ∊ {0,1}n, s0 such
that:

x,y ∊ {0,1}n, f(x) = f(y)  y=x s

The goal of the problem is to find the period s.

For example, if n=3, the following function satisfies the
required property:

x f(x)
000 100
001 010
010 000
011 110
100 000
101 110
110 100
111 010

Specifically, the string s is 110.

A quantum algorithm for solving this problem has a
quantum part and a classical post-processing part [8]. The
quantum part consists of following steps:
In the first step, two n-qubit registers are initialized to |0n =
|00…00�.

So, the initial state of the system is:

nn
000 

 (15)

The second step consist of applying the Hn transform to
the first register. Hn stands for HH…H (where H is the
Hadamard transform). The H transform can be generalized on
n qubits like in the following [9]:

 




 
12

0

1
2

1
n

y
n

yx

nn

n yxH (16)

where the product x y is defined as:

x y = x1 y1 x2 y2 . . .  xn yn

After the Hn transform is performed, the quantum state
becomes:

  




 
12

0
2/21 0

2

1
00

n

n

x
nnnnn

n xIH (17)

In the next step, the oracle transform Uf acts on both

registers. The Uf transformation is defined by:

Uf |xn |yn = |xn |f(x)yn (18)

where  denotes the bitwise XOR.
The quantum state becomes:




















12

0
2/

12

0
2/2)(

2

1
0

2

1
nn

x
nnn

x
nnnf xfxxU (19)

Finally, Hn transform is applied on first register and the

quantum state becomes:

  




 
12

0
2/223)(

2

1

n

n

x
nn

n
n

n xfxHIH 

(20)

According to eq (16), the final state can be written as:

 





12

0,
3)(1

2

1
n

yx
nn

yx

n
xfy (21)

  







 










12

0

12

0
3)(1

2

1
nn

x
n

yx

n
y

n
xfy

 Computer Science Section

 26

Let A = range(f) and let z∊A. By the definition of the

function f, there are exactly two possible values xz, x’z∊
{0,1}n such that

f(xz) = f(x’z) = z,

and moreover x’z = xzs. So,

  






  





 Az
n

yxyx
n

y
n

zy zz

n

)1()1(
2

1 '
12

0
3

  







 






 Az
n

ysxyx
n

y
n

zy zz

n

)1()1(
2

1)(
12

0
3

(22)

  







  





 Az
n

ysyx
n

y
n

zy z

n

)1(1)1(
2

1 (
12

0
3

Now the value of the first register is measured.
In the case where s  0n, probability to measure a value y is:

 



















1 0

0
2

1

)1(1)1(
2

1
)(

1

2
(

ysif

ysif

yP

n

Az

ysyx
n

z

 (23)

So, the measurement always results in a value that satisfies
s·y = 0.

Measurement of the first register will give a y1∊{0,1}n
where y1·s=0. The algorithm is restarted and a new

measurement will give a new value, y2∊{0,1}n where

y2·s=0, y2y1 and y20. s is uniquely determined once we
have n−1 linearly independent equations [10]. Simon’s
algorithm is repeated n-1 times to obtain a system of n-1
linear equations of the form:

y1· s = 0
y2· s = 0

. . .
yn-1· s = 0

The classical post-processing part consists of solving this

system of equations in n unknowns (the bits of s) to find s.

B.The Simon’s algorithm for n=3

In the case where n = 3, the quantum circuit has two
registers of size 3 and both are initialized to the state |000.

The |ψ0, |ψ1, |ψ2, |ψ3 quantum states are presented in the
Appendix A. The final forms of these states are:

0000000 



000111000110

000101000100000011

000010000001000000
22

1
1









010111100110

110101000100110011

000010010001100000
22

1
 2









110111

 100111010111000111

110110100110010110

000110110001100001

010001000001110000

100000010000000000
2

1
23













In order to implement the algorithm in QCL, the Uf

transformation must be described by quantum gates.
According to the definition of Uf transformation (relation
(18)), in the example given above, the action of Uf in the case
where the state of the first register is |000 can be described
as:

Uf|000|000=|000|000  f(000) =|000|000  100=|000|100
Uf|000|001=|000|001  f(000) =|000|001  100=|000|101
Uf|000|010=|000|010  f(000) =|000|010  100=|000|110
Uf|000|011=|000|011  f(000) =|000|011  100=|000|111
Uf|000|100=|000|100  f(000) =|000|100  100=|000|000
Uf|000|101=|000|101  f(000) =|000|101  100=|000|001
Uf|000|110=|000|110  f(000) =|000|110  100=|000|010
Uf|000|111=|000|111  f(000) =|000|111  100=|000|011

If the state of the first register is |001, Uf acts as follows:

Uf|001|000=|001|000  f(001) =|001|000  010=|001|010
Uf|001|001=|001|001  f(001) =|001|001  010=|001|011
Uf|001|010=|001|010  f(001) =|001|010  010=|001|000
Uf|001|011=|001|011  f(001) =|001|011  010=|001|001
Uf|001|100=|001|100  f(001) =|001|100  010=|001|110
Uf|001|101=|001|101  f(001) =|001|101  010=|001|111
Uf|001|110=|001|110  f(001) =|001|110  010=|001|100
Uf|001|111=|001|111  f(001) =|001|111  010=|001|101

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

 27

If the state of the first register is |101, Uf acts as follows:

Uf|101|000=|101|000  f(101) =|101|000  110=|101|110
Uf|101|001=|101|001  f(101) =|101|001  110=|101|111
Uf|101|010=|101|010  f(101) =|101|010  110=|101|100
Uf|101|011=|101|011  f(101) =|101|011  110=|101|101
Uf|101|100=|101|100  f(101) =|101|100  110=|101|010
Uf|101|101=|101|101  f(101) =|101|101  110=|101|011
Uf|101|110=|101|110  f(101) =|101|110  110=|101|000
Uf|101|111=|101|111  f(101) =|101|111  110=|101|001

Fig.3.Uf transformation for Simon's algorithm

Fig.4 The B gate

Similarly, the action of Uf can be described for the other
states of the registers.

The action of Uf can be represented as a 64 × 64 matrix
and can be reproduced by a set of quantum gates (CNOT, X,
CNOT and B) as shown in fig. 3.

In order to simulate the action of Uf, the author defined a
gate (B gate) which acts on three qubits a, b, c and flips the
third qubit (c) if only one of the first two qubits is set to 1 (if
a XOR b). This gate can be written using CCNOT and X
gates as drawn in fig. 4.

IV. THE QCL IMPLEMENTATION

QCL (Quantum Computation Language) is a high-level,

architecture independent programming language for quantum
computers [11]. It was conceived by Bernhard Ömer and the
current version appeared in 2004. QCL was implemented in
C, as a standalone full integrated compiler and runs under
Linux operating system. Its syntax and data types are similar
to those in C. The basic built-in quantum data type is qreg
(quantum register), which can be interpreted as an array of
qubits.

The main features of QCL are [12], [13]:

a) a classical control language with functions, flow-

control, interactive I/O and various classical data types
(int, real, complex, boolean, string);

b) 2 quantum operator types: general unitarian
(operator) and reversible pseudo-classic gates
(qufunct);

c) inverse execution, allowing for on-the-fly
determination of the inverse operator though caching of
operator calls;

d) various quantum data types (qubit registers) for compile
time information on access modes (qureg, quconst,
quvoid, quscratch);

e) convenient functions to manipulate quantum registers
(q[n] – qubit, q[n:m] – substring, q&p – combined
register);

f) quantum memory management (quheap) allowing for
local quantum variables

g) easy adaptation to individual sets of elementary
operators.

The QCL implementation of B quantum gate is presented

below:
//B gate
operator B(qureg x, qureg y, qureg z)
{
 CCNot(x,y,z);
 Not(x);
 Not(y);
 CCNot(x,y,z);
 Not(x);
 Not(y);
 Not(z);
}

The QCL implementation of Simon’s algorithm (the

quantum part) is presented below:

operator simonGates(qureg x, qureg y)
{
 //the Hadamard transformation is applied
 H(x);
 //the Uf transformation is performed
 CNot(y[1],x[0]);
 Not(y[2]);
 CNot(y[2],x[0]);
 B(x[2],x[1],y[2]);
 //the Hadamard transformation is applied
 H(x);
}

procedure simon()
{
 qureg x[3]; //the first register
 qureg y[3]; //the second register
 int m1; int m2; //the measured values

 {
 reset;

 Computer Science Section

 28

 simonGates(x,y);
 //measure the x register
 measure x,m1;
 print "The first measured value is: ", m1;
 } until (m1!=0);

 //the algorithm is restarted
 //to obtain the second equation
 //the new measured value must be
 //different from the first measured value
 {
 reset;
 simonGates(x,y);
 //measure the x register
 measure x,m2;
 print "The second measured value is: ", m2;
 } until ((m2!=0) and (m2!=m1));
}

Solving the system of equations is the classical post-

processing part of the algoritm. The implemetantion of this
part, also in QCL, is presented in the Appendix B.

In the figure 5 it can be seen various values measured at

various program executions. At the first run of the program
the measured values are 6 (1102) and 1 (0012). So, the
system in 3 unknowns to be solved is:

s1·1 + s2·1 + s3·0 = 0
s1·0 + s2·0 + s3·1 = 0

where s1, s2, s3 are the bits of string s and all of the operations
are modulo 2 operations. This system has two solutions:

s1 = s2 = s3 =0
and

s1 = s2 = 1 ,s3 = 0
But it was supposed s0, so the only valid solution is s = 110
(610).

On the last line QCL displays the current state of the quantum
machine.

V.CONCLUSIONS AND FUTURE WORK

Quantum computing permits to perform computational

operations on data much faster and efficiently by taking
advantage of quantum parallelism. At the same time, by using
the principle of superposition, a large amount of data could
be stored. In absence of quantum devices, quantum
computing simulators helps programmers to exploit the
features of quantum computers and understand the constraints
imposed by these devices. In the last years many quantum
computing simulators have been developed in order to
simulate quantum algorithms. In this paper the QCL quantum
language has been used to simulate the quantum algorithm
developed by David Simon and known as Simon’s algorithm.

This has been implemented for the case of 3-dimensional
registers.

This paper is a first attempt to develop a QCL
implementation of Simon algorithm. The oracle
transformation was simulated by CNOT gates, X gates and a
new 3-qubit gate which flips the third qubit if only one of the
first two qubits is set to 1. Further we will implement this
algorithm for other dimensions of the input registers and
other functions.

Fig.5. The results for several executions of the program


ACKNOWLEDGMENT

This paper was supported by the project "Sustainable

performance in doctoral and post-doctoral research
PERFORM - Contract no. POSDRU/159/1.5/S/138963",
project co-funded from European Social Fund through
Sectorial Operational Program Human Resources 2007-2013.

REFERENCES

[1] R. Feynman, “Simulating physics with computers”, International

Journal of Theoretical Physics, vol. 21, no. 6, pages 467–488,
1982

[2] D. Deutsch, “Quantum theory, the Church-Turing principle and
the universal quantum computer”, Proceedings of the Royal
Society of London A 400, pp. 97-117, 1985

[3] D. Deutsch, "Quantum computational networks", Proceedings of
the Royal Society of London A 425, pp. 73-90, 1989

[4] P.W. Shor, “Algorithms for Quantum Computing: Discrete
Logarithm and Factoring”, Proceedings of 35th Annual
Symposium on Foundations of Computer Science, Los
Alamitos, CA, USA, 1994, pp. 124-134

[5] L.K.Grover, “A fast quantum mechanical algorithm for database
search”, Proc. 28th Annual ACM Symposium on the Theory of
Computing (STOC), 1996, p. 212-219

[6] B. Schumacher, “Quantum coding”, Physical Review A, Vol. 51,
No. 4, April 1995

Journal of Applied Computer Science & Mathematics, no. 19 (9) /2015, Suceava

 29

[7] D. R. Simon, “On the Power of Quantum Computation”,SIAM
Journal on Computing, no. 5, p. 1474.

[8] John Watrous, Lecture Notes on Quantum Computing,
University of Waterloo, 2006

[9] D. Mermin, Lectures Notes on Quantum Computer. Cornell
University, Ithaca, New York, 2006.

[10] Umesh Vazirani, Lecture Notes on Quantum Computing,
University of California, Berkely, 2007

[11] H. De Raedt, K. Michielsen, Computational Methods for
Simulating Quantum Computers, arXiv:quant-ph/0406210,
2004

[12] B. Ömer, Quantum Programming in QCL, Technical
University of Vienna, Austria, 2000.

[13] B. Ömer, Strucured Quantum Programming in QCL, Technical
University of Vienna, Austria, 2003.

Adina Bărîlă is a PhD student at „Ștefan cel Mare” University of Suceava in Computers and Information Technology area. Her research

interests include quantum computing and databases.

Appendix A

In the case where n = 3 and Uf is the oracle transform corresponding to function given in this paper , the quantum states |ψ0,
|ψ1, |ψ2, |ψ3 are:

0000000 

    000 000000000 3
2

3
1 3

  HIH
        111110101100 011010001000

22

1
10

2

1
10

2

1
10

2

1
000 0003  HHHH

 000111000110000101000100000011000010000001000000

22

1
 1 

 010111100110110101000100110011000010010001100000
22

1
12   fU

         
        010 111100 110110 101000 100

110 011000 010 010 001100 000
22

1

3333

3333
22

3
3 3









HHHH

HHHHIH 

According to (16) |ψ3 can be written:

  

   

   

   

 010 111110101100

011010001000
2

1
100 111110101100011010001000

2

1
110 111110101

100011010001000
2

1
000 111110101100011010001000

2

1
110 111110

101100011010001000
2

1
000 111110101100011010001000

2

1
010 111

110101100011010001000
2

1
100 111110101100011010001000

2

1

22

1

33

33

33

33
3
















 Computer Science Section

 30



010111010110010101010100

010011010010010001010000 100111100110100101100100100011100010

100001100000 110111110110110101110100110011110010110001110000

000111000110000101000100000011000010000001000000 110111110110

110101110100110011110010110001110000 000111000110000101000100

000011000010000001000000 010111010110010101010100010011010010

010001010000100111100110100101100100100011100010100001100000
2

1
33
















110111 100111010111000111110110100110010110000110

110001100001010001000001110000100000010000000000
2

1
23





Appendix B

The implementation of classical post-processing part of the
algoritm

//m1 and m2 are the measured values

//yy[] contains the values of m1 and m2
//represented in base two
print "The system to be solved is: ";
for i=0 to 1 {
 print "s1*",yy[i,0],"+s2*",yy[i,1],"+ s3*",
 yy[i,2]," = 0";
}
sum[0] = (yy[0,0]+yy[0,1]+yy[0,2]) mod 2;
sum[1] = (yy[1,0]+yy[1,1]+yy[1,2]) mod 2;

p[0] = (yy[0,0]*yy[0,1]*yy[0,2]) mod 2;
p[1] = (yy[1,0]*yy[1,1]*yy[1,2]) mod 2;

i=0; ok=0;
while (i<2) and (ok==0)
{
 if p[i]==0 {
 if sum[i]==1 {ok=1;l=i;}
}
i=i+1;

}

if ok==1 {
 for i=0 to 2 {
 if yy[l,i]==1 {k=i;s[k]=0;}

}
l = (l+1) mod 2;
k1=-1; k2=-1;
for j=0 to 2
{

 if j!=k {
 if k1<0 {k1=j;}
 else {k2=j;}
 }
}
if yy[l,k1]==0 {
 s[k1]=1;
 s[k2]=0;
}
else {
 if yy[l,k2]==0 {s[k1]=0; s[k2]=1;}
 else {s[k1]=1; s[k2]=1;}
}

}
else {
 if (p[0]==0 and p[1]==0){
 for j=0 to 2 { s[j]=1;}
}
else {
 if p[0]==0 {l=0;}
 else {l=1;}
 for j=0 to 2
 { s[j]=yy[l,j];}
}

}
print "s = ",s[0],s[1],s[2];

	inner_covers&index
	inner_covers&index
	inner_covers&index
	inner_covers&index
	inner_covers&index.pdf
	inner_covers&index.pdf
	inner_covers&index.pdf
	inner_covers&index.pdf
	inner_covers&index.pdf
	JACSM 1-5.pdf
	table of contents.pdf
	foreword.pdf

	TABLE OF CONTENTS.pdf
	index.pdf

	index.pdf

	Foreword
	index

	Untitled

