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Foreword 

A New Tool for Researchers 
ResearchGate – The Largest Free Professional Network for Researchers 

Creating a social network is not a revolutionary idea anymore. There are social networks on 
every subject nowadays: music, film, cars or only for socializing with friends. What about a social 
network targeting a specific group of people like researchers and scientists? 

Researchers often meet with obstacles delaying their research progress, even if there has 
eventually already been found a solution somewhere else in the world. In order to facilitate the 
progress in science by sharing knowledge all over the world, was launched in 2008 ResearchGate, 
the largest academic scientific network, by three young researchers. 

The Online Platform gathers more the 800.000 researchers and scientists all over the world. 
It's founders, researchers themselves, knew researchers need and designed the site according to this. 
Users have the opportunity not only to find fellow researchers and collaborate, but also to find 
relevant literature, to create discussion groups on their research interests, to find jobs in their field 
or to publish their papers. “Our scientific community connects scientists and researchers from 
Africa, South America or Russia, countries between which there has never been a scientific 
collaboration before.”, says Ijad Madisch, founder and CEO of ResearchGate. 

ResearchGate is specially designed for the needs of scientists: starting from the profile, 
containing information about researchers projects, publications etc. to the semantic search algorithm 
in the similar abstract search, finding related articles within a database of more than 30 million 
documents. For example, by tipping in “computer science” you get more than 50 researchers in this 
field, more than 25 discussion groups, as well as more than 10.000 publications. Hence 
ResearchGate provides a collaborative working space without any spatially or temporarily borders. 

To discover and benefit from ResearchGate facilities go to www.researchgate.net 

Editorial Board 
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Quantum Computing - A new Implementation of Simon Algorithm for 
3-Dimensional Registers 

 
Adina BĂRÎLĂ 

“Ștefan cel Mare” University of Suceava, Romania 
adina@eed.usv.ro 

 

Abstract–Quantum computing is a new field of science aiming 
to use quantum phenomena in order to perform operations on 
data. The Simon algorithm is one of the quantum algorithms 
which solves a certain problem exponentially faster than any 
classical algorithm solving the same problem. Simulating of 
quantum algorithms is very important since quantum hardware 
is not available outside of the research labs. QCL (Quantum 
Computation Language) is the most advanced implemented 
quantum computer simulator and was conceived by Bernhard 
Ömer. The paper presents an implementation in QCL of the 
Simon algorithm in the case of 3-dimensional registers. 

 
Keywords: quantum computing, quantum gate, quantum 

algorithm. 
 

I. INTRODUCTION 
 

Quantum computing is a new field of science whose origin 
is the Richard Feynman’s idea for constructing a computer to 
simulate the quantum systems [1]. Introduced in the early 
1980’s, quantum computing investigates the computational 
power of computer based on quantum mechanical principles 
and wants to find algorithms faster than classical algorithms 
solving the same problem. David Deutsch introduced two 
models for quantum computation: a quantum version of 
Turing machine [2] and quantum circuits [3]. He 
demonstrated that the universal quantum computer can do 
things that the universal Turing machine cannot. He also 
demonstrated that quantum gates can be combined to achieve 
quantum computation in the same way that Boolean gates can 
be combined to achieve classical computation.  

David Deutsch invented the first quantum algorithm which 
solves a computational problem in a more efficient way that 
classical computation. He presented an example which 
showed that a single quantum computation may suffice to 
decide whether a given one-bit function is constant or 
balanced. The Deutsch-Jozsa algorithm was designed in 1992 
to maximally illustrate the computational advantage of 
quantum computing over classical computing. Other notable 
algorithms were developed by Simon and Vazirani. But the 
most important results in the field of quantum computing are 
considered the Shor’s and the Grover’s algorithms. In 1994, 
Peter Shor described a polynomial time quantum algorithm 
for factoring integers[4] and in 1996 Lov Grover invented the 
quantum database search algorithm which achieved quadratic 

speedup for the classic problem of database search [5]. From 
those years, the research in quantum computing field has 
accelerated, computer scientists trying to build quantum 
computers and find other quantum algorithms.  

This paper aims to present an original implementation of 
Simon algorithm based on Quantum Computation Language 
(QCL). Section II presents basic concepts of quantum 
computation. Section III introduces Simon algorithm and 
section IV presents a QCL implementation of this . Section V 
draws some conclusion and future work. 

 
II. QUANTUM COMPUTATION – BASIC CONCEPTS 

 
The fundamanetal unit of quantum information is called 

quantum bit or qubit [6]. A qubit is a physical system which 
has two basis states, conventionally written |0 and |1, 
corresponding to the classical values 0 and 1. Unlike the 
classical bit, the general state of a qubit is a linear 
combination – or a superposition –  of the basis states: 

 
|ψ = α|0 + β|1 (1) 

 
where the amplitudes α and β are complex numbers such that: 
 

|α|2+|β|2=1 (2) 
 
In other words, a qubit can exist as a zero, a one, or 

simultaneously as both 0 and 1 (when both α and β are 
nonzero). Formally, a quantum state is a unit vector in a 
Hilbert space. 

A  system consisting of n qubits has 2n basis states and its 
general state is a superposition of all basis states: 

 







1

0

2
n

k
k kc   (3)  

 
where: 

011 kkkk n    (4)  

with |kj represents the state of qubit j and 011 kkkn   (or 

011 kkkn   or 011 ,,, kkkn  ) represents the tensor 
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product 011 kkkn   . The amplitudes ck are 

complex numbers such that: 

1
2 1

0

2 




n

k
kc   (5)  

 
Like the single-qubit system, a n-qubit register can store 
simultaneously all the basis states. A state of a n-qubit 
register is an element in the space Hn = HH. . .H (tensor 
product). 

Evolution of a quantum system can be described by a 
unitary transformation U. A unitary transformation that acts 
on a small number of qubits is called a gate. A quantum gate 
has the same number of inputs and outputs. A one-qubit 
elementary gate is described by a 2x2 matrix: 

 











dc

ba
U   (6)  

 
which transforms |0 into a|0+b|1 and |1 into c|0+d|1. The 
Hadamard (H) and the Pauli (X,Y,Z) gates are examples of 
quantum gates that act on a single qubit: 
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
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



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



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
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

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
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0

0
Z

i

i
Y   (8)  

 
The most important two-qubit gate is the CNOT (controlled-
not gate). It has two input qubits, the control and the target 
qubit. The target qubit is flipped only if the control qubit is 
set to 1. The matrix form of this gate is: 
 





















0100

1000

0010

0001

CNOT   (9) 

 
and the circuit representation is represented in fig.1. 

CNOT is a generalization of the classical XOR gate, since 
its action may be summarized as |x,y → |x, yx, where  is 
addition modulo two, which is the same as XOR. 
 

 
Fig. 1 The CNOT gate 

Generally, if U is a one-qubit gate with matrix 
representation: 

 











1110

0100

xx

xx
U   (10)  

 
then the controlled-U gate is a two-qubit gate with matrix 
representation: 
 





















1110
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00
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0001

)(

xx

xx
UC   (11) 

 
The first qubit is the control qubit. 

The SWAP gate is the quantum generalisation of the 
CROSSOVER  classical gate. It swaps the quantum states of 
the qubits. The matrix representation is: 

 





















1000

0010

0100

0001

SWAP   (12)  

 
The Cph (controlled phase) gate acts on two qubits and it 

has no classical equivalent. 
 









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






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
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i

U cph
  (13) 

 
An important three-qubit gate is the CCNOT (controlled-
controlled-not) gate. It has two control qubits and a target 
qubit. The target qubit is flipped only if the control qubits are 
set to 1. The matrix form of CCNOT gate is given in eqn. 14 
and the circuit representation is shown in fig. 2. 
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
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Fig. 2 The CCNOT gate 

Measurement is the only nonreversible operation which 
can be applied to a quantum state. Measurement collapses a 
quantum state into one of the possible basis states, so 
measurement is a destructive operation. If a qubit is in the 
state |ψ = α|0 + β|1 and a measure is performed, it obtaines 
0 with probability α2 (the qubit’s state becomes |0 ) and 1 
with probability β2 (the qubit’s state becomes |1 ). 
 

III. SIMON ALGORITHM 
 

A. Overview 
 
Daniel Simon [7] proposed the following problem: let f  be 

a function of the form: 

f: {0,1}n → {0,1}n 

for a positive integer n. The function f is promised to have 

the property that there exists a string s ∊ {0,1}n, s0 such 
that: 

x,y ∊ {0,1}n, f(x) = f(y)  y=x s 

The goal of the problem is to find the period s. 

For example, if n=3, the following function satisfies the 
required property: 

x f(x) 
000 100 
001 010 
010 000 
011 110 
100 000 
101 110 
110 100 
111 010 

 
Specifically, the string s is 110. 

A quantum algorithm for solving this problem has a 
quantum part and a classical post-processing part [8]. The 
quantum part consists of following steps: 
In the first step, two n-qubit registers are initialized to |0n = 
|00…00�. 

So, the initial state of the system is: 

nn
000 

    (15)  

The second step consist of applying the Hn  transform to 
the first register. Hn stands for HH…H (where H is the 
Hadamard transform). The H transform can be generalized on 
n qubits like in the following [9]: 

 

 




 
12

0

1
2

1
n

y
n

yx

nn

n yxH  (16) 

where the product x y is defined as: 

x y = x1 y1 x2 y2 . . .  xn yn 

 
After the Hn  transform is performed, the quantum state 
becomes: 

  




 
12

0
2/21 0

2

1
00 

n

n

x
nnnnn
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In the next step, the oracle transform Uf  acts on both 

registers. The Uf  transformation is defined by:  
 

Uf |xn |yn = |xn |f(x)yn  (18) 
 
where  denotes the bitwise XOR. 
The quantum state becomes: 
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Finally,  Hn  transform is applied on first register and the 

quantum state becomes: 

  




 
12

0
2/223 )(
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1
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(20)  

 
According to eq (16), the final state can be written as: 
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Let A = range(f) and let z∊A. By the definition of the 

function f, there are exactly two possible values xz, x’z∊ 
{0,1}n such that  

f(xz) = f(x’z) = z, 

and moreover x’z = xzs. So,  

 

 

  






  





 Az
n

yxyx
n

y
n

zy zz

n

 )1()1(
2

1 '
12

0
3

 

  







 






 Az
n

ysxyx
n

y
n

zy zz

n

 )1()1(
2

1 )(
12

0
3

          

(22) 
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Now the value of the first register is measured. 
In the case where s  0n, probability to measure a value y is: 
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  (23) 

 
So, the measurement always results in a value that satisfies 
s·y = 0.  

Measurement of the first register will give a y1∊{0,1}n 
where y1·s=0. The algorithm is restarted and a new 

measurement will give a new value, y2∊{0,1}n where 

y2·s=0, y2y1 and y20. s is uniquely determined once we 
have n−1 linearly independent equations [10]. Simon’s 
algorithm is repeated n-1 times to obtain a system of n-1 
linear equations of the form: 

y1· s = 0 
y2· s = 0 

. . . 
yn-1· s = 0 

 
The classical post-processing part consists of solving this 

system of equations in n unknowns (the bits of s) to find s.  
 
B.The Simon’s algorithm for n=3 
 

In the case where n = 3,  the  quantum circuit has two 
registers of size 3 and both are initialized to the state |000.  

The |ψ0, |ψ1, |ψ2, |ψ3 quantum states are presented in the 
Appendix A. The final forms of these states are: 
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In order to implement the algorithm in QCL, the Uf 

transformation must be described by quantum gates. 
According to the definition of Uf transformation (relation 
(18)), in the example given above, the action of Uf  in the case 
where the state of the first register is |000 can be described 
as: 

 
Uf|000|000=|000|000  f(000) =|000|000  100=|000|100 
Uf|000|001=|000|001  f(000) =|000|001  100=|000|101 
Uf|000|010=|000|010  f(000) =|000|010  100=|000|110 
Uf|000|011=|000|011  f(000) =|000|011  100=|000|111 
Uf|000|100=|000|100  f(000) =|000|100  100=|000|000 
Uf|000|101=|000|101  f(000) =|000|101  100=|000|001 
Uf|000|110=|000|110  f(000) =|000|110  100=|000|010 
Uf|000|111=|000|111  f(000) =|000|111  100=|000|011 

 

If the state of the first register is |001, Uf  acts as follows: 
 
Uf|001|000=|001|000  f(001) =|001|000  010=|001|010 
Uf|001|001=|001|001  f(001) =|001|001  010=|001|011 
Uf|001|010=|001|010  f(001) =|001|010  010=|001|000 
Uf|001|011=|001|011  f(001) =|001|011  010=|001|001 
Uf|001|100=|001|100  f(001) =|001|100  010=|001|110 
Uf|001|101=|001|101  f(001) =|001|101  010=|001|111 
Uf|001|110=|001|110  f(001) =|001|110  010=|001|100 
Uf|001|111=|001|111  f(001) =|001|111  010=|001|101 
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If the state of the first register is |101, Uf  acts as follows: 
 
Uf|101|000=|101|000  f(101) =|101|000  110=|101|110 
Uf|101|001=|101|001  f(101) =|101|001  110=|101|111 
Uf|101|010=|101|010  f(101) =|101|010  110=|101|100 
Uf|101|011=|101|011  f(101) =|101|011  110=|101|101 
Uf|101|100=|101|100  f(101) =|101|100  110=|101|010 
Uf|101|101=|101|101  f(101) =|101|101  110=|101|011 
Uf|101|110=|101|110  f(101) =|101|110  110=|101|000 
Uf|101|111=|101|111  f(101) =|101|111  110=|101|001 

 

 
Fig.3.Uf transformation for Simon's algorithm 

 

Fig.4 The B gate 

Similarly, the action of Uf can be described for the other 
states of the registers.  

The action of Uf  can be represented as a 64 × 64 matrix 
and can be reproduced by a set of quantum gates (CNOT, X, 
CNOT and B) as shown in fig. 3. 

In order to simulate the action of Uf, the author defined a 
gate (B gate) which acts on three qubits a, b, c and flips the 
third qubit (c) if only one of the first two qubits is set to 1 (if 
a XOR b). This gate can be written using CCNOT and X 
gates as drawn in fig. 4. 

 
IV. THE QCL IMPLEMENTATION 

 
QCL (Quantum Computation Language) is a high-level, 

architecture independent programming language for quantum 
computers [11]. It was conceived by Bernhard Ömer and the 
current version appeared in 2004. QCL was implemented in 
C, as a standalone full integrated compiler and runs under 
Linux operating system. Its syntax and data types are similar 
to those in C. The basic built-in quantum data type is qreg 
(quantum register), which can be interpreted as an array of 
qubits. 

The main features of QCL are [12], [13]: 

 
a) a classical control language with functions, flow-

control, interactive I/O and various classical data types 
(int, real, complex, boolean, string); 

b) 2 quantum operator types: general unitarian 
(operator) and reversible pseudo-classic gates 
(qufunct); 

c) inverse execution,  allowing for on-the-fly 
determination of the inverse operator though caching of 
operator calls; 

d) various quantum data types (qubit registers) for compile 
time information on access modes (qureg, quconst, 
quvoid, quscratch); 

e) convenient functions to manipulate quantum registers 
(q[n] – qubit, q[n:m] – substring, q&p – combined 
register); 

f) quantum memory management (quheap) allowing for 
local quantum variables 

g) easy adaptation to individual sets of elementary 
operators. 

 
The QCL implementation of B quantum gate is presented 

below:  
//B gate 
operator B(qureg x, qureg y, qureg z) 
{ 
    CCNot(x,y,z); 
    Not(x); 
    Not(y); 
    CCNot(x,y,z); 
    Not(x); 
    Not(y); 
    Not(z); 
} 

 
The QCL implementation of Simon’s algorithm (the 

quantum part) is presented below: 
 
operator simonGates(qureg x, qureg y) 
{ 
  //the Hadamard transformation is applied 
  H(x); 
  //the Uf transformation is performed 
  CNot(y[1],x[0]); 
  Not(y[2]); 
  CNot(y[2],x[0]); 
  B(x[2],x[1],y[2]);   
  //the Hadamard transformation is applied 
  H(x);   
} 
 
procedure simon() 
{ 
  qureg x[3]; //the first register 
  qureg y[3]; //the second register 
  int m1; int m2; //the measured values 
 
  { 
  reset; 
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  simonGates(x,y); 
  //measure the x register 
  measure x,m1; 
  print "The first measured value is: ", m1; 
  } until (m1!=0); 
 
  //the algorithm is restarted 
  //to obtain the second equation 
  //the new measured value must be 
  //different from the first measured value 
  { 
  reset; 
  simonGates(x,y); 
  //measure the x register 
  measure x,m2; 
  print "The second measured value is: ", m2; 
  } until ((m2!=0) and (m2!=m1)); 
} 

 
Solving the system of equations is the classical post-

processing part of the algoritm. The implemetantion of this 
part, also in QCL, is presented in the Appendix B. 
 
In the figure 5 it can be seen various values measured at 

various program executions.  At the first run of the program 
the measured values are 6 (1102) and 1 (0012).  So, the 
system in 3 unknowns to be solved is: 

 
s1·1 + s2·1 + s3·0 = 0 
s1·0 + s2·0 + s3·1 = 0 

 
where s1, s2, s3 are the bits of string s and all of the operations 
are modulo 2 operations. This system has two solutions: 
  

s1 = s2 = s3 =0 
and 

s1 = s2 = 1 ,s3 = 0 
But it was supposed s0, so the only valid solution is s = 110 
(610).  
 
On the last line QCL displays the current state of the quantum 
machine. 
 
 

V.CONCLUSIONS AND FUTURE WORK 

 
Quantum computing permits to perform computational 

operations on data much faster and efficiently by taking 
advantage of quantum parallelism. At the same time, by using 
the principle of superposition, a large amount of data could 
be stored. In absence of quantum devices, quantum 
computing simulators helps programmers to exploit the 
features of quantum computers and understand the constraints 
imposed by these devices. In the last years many quantum 
computing simulators have been developed in order to 
simulate quantum algorithms. In this paper the QCL quantum 
language has been used to simulate the quantum algorithm 
developed by David Simon and known as Simon’s algorithm. 

This has been implemented for the case of 3-dimensional 
registers. 

This paper is a first attempt to develop a QCL 
implementation of Simon algorithm. The oracle 
transformation was simulated by CNOT gates, X gates and a 
new 3-qubit gate which flips the third qubit if only one of the 
first two qubits is set to 1.  Further we will implement this 
algorithm for other dimensions of the input registers and 
other functions. 

 
Fig.5. The results for several executions of the program 
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Appendix A 
 

In the case where n = 3 and Uf is the oracle transform corresponding to function given in this paper , the quantum states |ψ0, 
|ψ1, |ψ2, |ψ3 are: 
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According to (16) |ψ3 can be written: 
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Appendix B 
 

The implementation of classical post-processing part of the 
algoritm  

 
//m1 and m2 are the measured values 
 
//yy[] contains the values of m1 and m2 
//represented in base two 
print "The system to be solved is: "; 
for i=0 to 1 { 
  print "s1*",yy[i,0],"+s2*",yy[i,1],"+ s3*", 
                    yy[i,2]," = 0"; 
}  
sum[0] = (yy[0,0]+yy[0,1]+yy[0,2]) mod 2; 
sum[1] = (yy[1,0]+yy[1,1]+yy[1,2]) mod 2; 
 
p[0] = (yy[0,0]*yy[0,1]*yy[0,2]) mod 2; 
p[1] = (yy[1,0]*yy[1,1]*yy[1,2]) mod 2; 
 
i=0; ok=0; 
while (i<2) and (ok==0) 
{  
  if p[i]==0 { 
  if sum[i]==1 {ok=1;l=i;} 
} 
i=i+1; 

} 
 
if ok==1 { 
  for i=0 to 2 { 
  if yy[l,i]==1 {k=i;s[k]=0;}  

} 
l = (l+1) mod 2;  
k1=-1; k2=-1; 
for j=0 to 2 
{ 

    if j!=k {  
      if k1<0 {k1=j;}  
      else {k2=j;} 
    } 
} 
if yy[l,k1]==0 { 
  s[k1]=1; 
  s[k2]=0; 
} 
else { 
  if yy[l,k2]==0 {s[k1]=0; s[k2]=1;} 
  else {s[k1]=1; s[k2]=1;} 
} 

} 
else { 
  if (p[0]==0 and p[1]==0){   
  for j=0 to 2 { s[j]=1;} 
} 
else { 
  if p[0]==0  {l=0;} 
  else {l=1;} 
  for j=0 to 2 
  { s[j]=yy[l,j];} 
} 

} 
print "s = ",s[0],s[1],s[2]; 
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