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QUANTUM CIRCUITS FOR QUANTUM WALKS ON THE 

HYPERCUBE1 

Adina BĂRÎLĂ 

„Ștefan cel Mare” University of Suceava 

e-mail: adina@eed.usv.ro 

Romania 

Abstract: The field of quantum computing investigates the computational power of 

computers based on quantum mechanical principles. In the last years new quantum 

algorithms have appeared: algorithms based on quantum walks model and on adiabatic 

model. The paper presents some fundamental concepts of quantum walks and proposes a 

quantum circuit for quantum walks on the hypercube. Also, a QCL implementation of 

quantum walk algorithm is presented. QCL (Quantum Computation Language) is the 

most advanced implemented quantum computer simulator and was conceived by 

Bernhard Ömer.  

Key words: quantum computing, quantum gate, quantum walk. 

 

 

1. INTRODUCTION 

 

Quantum computing is a field of science which investigates the computational 

power of computers based on quantum mechanical principles. It was introduced in the 

early 1980’s and recent research has proved the potential of quantum computing 

systems to solve problems that are considered unsolvable due to the necessary 

computing effort. 

 The first quantum algorithm which solves a computational problem in a more 

efficient way than classical computation was invented by David Deutsch. He presented 

an example which showed that a single quantum computation may suffice to decide 

whether a given one-bit function is constant or balanced. Other notable algorithms 

were developed by Simon and Vazirani.  

                                                        
1 ACKNOWLEDGMENT This  paper was supported by the project "Sustainable performance in doctoral and post-

doctoral research PERFORM - Contract no. POSDRU/159/1.5/S/138963", project co-funded from European  Social  

Fund through Sectorial Operational Program Human Resources 2007-2013 

mailto:adina@eed.usv.ro
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But, two important discoveries have led to shaping this area of quantum 

computing [1]: the Shor’s and the Grover’s algorithms. In 1994, Peter Shor described 

a polynomial time quantum algorithm for factoring large integers [2] and in 1996 Lov 

Grover invented the quantum database search algorithm which achieved quadratic 

speedup for the classic problem of database search [3]. Since then, each of the two 

algorithms has been analyzed and generalized. Shor’s algorithm has been generalized 

to solve the problem of finding hidden subgroup and Grover’s algorithm has been 

generalized to solve problems like approximate counting and collision-finding.  

In the last years new quantum algorithms have appeared: algorithms based on 

quantum walks model and on adiabatic model. Quantum walks are quantum 

generalizations of classical random walks. Adiabatic computation is a physics-based 

paradigm for quantum algorithms [1]. 

Section 2 presents some basic concepts in quantum computing. Section 3 

considers some fundamental concepts of quantum walks. Section 4 proposes a 

quantum circuit for the quantum walk on the hypercube and a QCL implementation of 

quantum walk algorithm. Section 5 draws the conclusion. 

 

 

2. BASIC CONCEPTS IN QUANTUM COMPUTING  

2.1.Qubits 

The quantum analogous of the classical bit is called quantum bit or qubit [4]. A 

qubit is a quantum system whose general state is a linear combination (or a 

superposition) of two basis states, conventionally written |0 and |1. The quantum bit 

is describe by a unit vector | in a Hilbert space H = C2 which computational basis is 

{|0, |1}. So 

 |ψ = α|0 + β|1 (1) 

where  

 |0 = (1 0)T    |1 = (0 1)T (2) 

and the amplitudes α and β are complex numbers such that: 

 |α|2 + |β|2 = 1 (3) 

In other words, a qubit can exist in a state |0, or |1 or simultaneously in |0 and |1 

(when both α and β are nonzero). 

When measuring a qubit it obtaines 0 with probability α2 (and the qubit’s state 

becomes |0) or 1 with probability β2 (and the qubit’s state becomes |1). Measurement 

collapses a quantum state into one of the possible basis states, so measurement is a 

destructive operation. 

A  system consisting of n qubits has 2n basis states and its general state is a 

superposition of all basis states: 

 







1

0

2
n

k

k kc   (4)  
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where: 

 011 kkkk n    (5)  

with |kj represents the state of qubit j and 011 kkkn   (or 011 kkkn   

or 011 ,,, kkkn  ) represents the tensor product 011 kkkn   . The amplitudes ck 

are complex numbers such that: 

 
1

2 1

0

2






n

k

kc   (6)  

Like the single-qubit system, a n-qubit register can store simultaneously all the basis 

states. A state of a n-qubit register is an element in the space Hn = HH. . .H 

(tensor product). 

2.2.Quantum gates 

A quantum gate is a unitary transformation that acts on a small number of qubits. 

Every operation applied to a quantum state must be reversible so a quantum gate has 

the same number of inputs and outputs. A one-qubit elementary gate is described by a 

2x2 matrix: 

 










dc

ba
U   (7)  

which transforms |0 into a|0+c|1 and |1 into b|0+d|1.  

The Hadamard (H) and the Pauli (X,Y,Z) gates are examples of quantum gates 

that act on a single qubit: 
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The most important two-qubit gate is the CNOT (controlled-not gate). It has two 

input qubits, the control and the target qubit. The target qubit is flipped if and only if 

the control qubit is set to 1. The matrix form of this gate is given in eqn. 9 and the 

circuit representation is shown in fig.1. 
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Fig. 1 The CNOT gate    Fig. 2 The CCNOT gate 

An important three-qubit gate is the Toffoli gate, also known as CCNOT 

(controlled-controlled-not) gate. It has two control qubits and a target qubit. The target 
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qubit is flipped only if and only if the control qubits are set to 1. The matrix form of 

CCNOT gate is given in eqn. 9 and the circuit representation is shown in fig.2. 

 

 

3. QUANTUM  WALKS  

 

Quantum walk can be regarded as quantum equivalent of the classical random 

walk. Like in the classical case, there are two quantum walk models: discrete time 

quantum walk and continuous time quantum walk. In this paper the discrete time 

quantum walks will be considered. 

 

3.1.Discrete time quantum walk on the line 

 

A discrete time quantum walk on the line is defined in analogy with the classical 

random walk on the line.[5] In the classical case, a walker is placed at the origin of a 

line numbered from –N to N. The walker tosses an unbiased coin and moves either left 

or right by one position depending on outcome. If the random walk is performed a 

large enough number of times, one gets a binomial distribution of the walker final 

position centered about the origin.  

In the quantum case, the position of the walker is a vector in a Hilbert space HP 

with the following computational basis 

 { |n : n  Z } (10) 

The evolution of the walk depends on a quantum “coin”. If one obtains “head” 

after tossing, the walker “moves” from the position described by the vector |n to the 

position described by |n+1. If one obtains “tail” the walker “moves” from |n to the 

position described by |n-1. The coin is a vector in a Hilbert space HC with 

computational basis {|0, |1}. The Hilbert space of the quantum system is H = HP  

HC. Since quantum operations must be reversible , „toss”  must be performed by a 

unitary operator called coin operator.[6] 

The most used coin [7] for unidimensional quantum walks is the Hadamard operator: 

 











11

11

2

1
H   (11)  

This operator/which acts on basis states as follow: 

 H|0,n = 
2

1
(|0,n+|1,n) (12) 

 H|1,n = 
2

1
(|0,n-|1,n) (13) 

The shift from |n to |n+1 or |n-1 is described by a unitary operator, called shift 

operator S [6]. This acts as follows: 

 S|0|n = |0|n+1  (14) 

 S|1|n = |1|n-1 (15)  

The quantum walk consists in applying the unitary operator [8] 
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 U = S (C  I) (16) 

a number of times without intermediate measurements, where C is the coin operator 

and I is the indentity operator on the Hilbert space HP.  

So, the algorithm which implements the quantum walk can be implemented as follows 

1.initialize the system 
2.for every iteration  

toss the coin 

shift the position 

3.perform measurement 

After t steps, the final state before measurement is given by 

 |t = Ut|Ψ0 (17) 

where |Ψ0 represents the initial state.  

For example, if the initial position of the walker is |x=0 and the coin state is |0, then 

the initial quantum state is  

 |ψ0 = |0 |0 (18) 

If Hadamard operator is the coin operator, after “tossing” and shifting the quantum 

state becomes  

 
 1110

2

1
0

2

10
00 


 
 SIH   (19) 

The result is a superposition of the walker both in position 1 and -1. In the 

classical random walk, the walker can only go in one direction at a time. In contrast, in 

quantum walk he can go in both directions until the measuring operation is performed. 

So, the quantum state at the moment t=1 is  

  1011
2

1
1    (20) 

The next step can be computed by |ψ2 = U|ψ1. 
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  (21) 

Quantum walk has different behaviour compared to its classical counterpart: 

spreading at a rate proportional to t, quadratically faster than the classical random 

walk.[9] Unlike the classical case, probability distribution is not always symmetric. 

The distribution of the walk is dependent on the initial state. When the initial position 

of the walker is |0 and the initial coin state is |0, the distribution is ‘skewed’ to the 

right (the thick line in Fig.3) because of Hadamard coin. If the initial state is |1|0  the 

distribution is ‘skewed’ to the left (the thin line in Fig.3) .  
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Fig. 3 Probability distribution after 100 steps of a quantum walk on the line with the Hadamard 

coin and initial state |0|0 (the thick line) and 1|0 (the thin line), respectively.  

An initial state that leads to a symmetrical distribution is [6]  

 0
2

10
)0( 


 n

i
   (22) 

 

3.2.Discrete time quantum walk on a regular graph  

 

The difference between the quantum walk on a regular graph and the quantum 

walk on the line is the Hilbert space of the quantum system. 

Let G = (V,E) be a regular undirected graph,  where V = {1,2,…N} is the set of 

vertices and E is the set of edges. The Hilbert space of the quantum system is  

  H = HC  Hv (23) 

where Hv is the vertices space which has the following computational basis 

 Hv = { |v: v ∊ ZN} (24) 

where N is the number of vertices, and HC  is the coin space and has the computational 

basis  

 HC = {|k: k ∊ Zd } (25) 

where d is the degree of every vertex.  

 G is a regular graph, so for every vertex there exists a set of d edges { j
ve   E | j = 

1,2,…, d} so that j
ve  is the j-th edge which connects the vertices v and vj. The walker 

can move in any of d directions. The shift operator S maps the state |k,v into |k,vj.  

Often used coin operators are the Hadamard, the Grover and the DFT (Discrete 

Fourier Transform) operators. The Grover and DFT operators are given by  
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where d is the vertex degree,  Id is the identity operator and where w = exp(2πi/d).  

 

3.3.Discrete time quantum walk on the hypercube 

 

The hypercube of dimension n is a regular graph with  N = 2n vertices. The 

every vertex degree is n. Vertices are labeled by n-bit strings and two vertices are 

adjacent if and only if their labels differ only by one bit. The edges are also labeled. If 

two vertices differ by the j-th bit, the label of the edge connecting these vertices is j. 

[6] The Hilbert space associated with a quantum walk on the hypercube is 
n

HHH n 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

4.QUANTUM CIRCUITS FOR QUANTUM WALKS ON THE 

HYPERCUBE 

 

On a hypercube, the shift operator maps the state |k,v into |k,vj, where the n-bit 

strings v and vj differ by the j-th bit. So, the shift operator S can be represented as 

follows: 

 S|1|p1,p2,…,pn = |1|p11, p2,…,pn (27) 

 S|2|p1,p2,…,pn = |2|p1, p21,…,pn (28) 

 . . . 

 S|n|p1,p2,…,pn = |n|p1, p2,…, pn 1 (29) 

where  denotes addition modulo two. 

If n is a power of two, the action of this operator can be reproduced by 

(Controlled)m-NOT quantum gates as shown in figure 5. 

111 

101 

110 

100 

011 

001 

010 

000 

Fig. 4 Hypercube of dimension 3 
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Fig. 5 Quantum circuit for the shift operator 

where |c1|c2…|cm is the coin state and |p1|p2…|pn is the position state (vertex 

state). For example, the shift operator for the quantum walk on the hipercube of 

dimension 4 is shown in figure 6. 

 

 
Fig. 6 The quantum circuit for the shift operator in the case n=4 

The first gate flips the target qubit if and only if the control qubits are set to 0. It can 

be represented using CCNOT and X gates as follow 

 

Also, the second and the third gates can be represented using CCNOT and X gates. 
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The QCL implementation of the quantum walk algorithm on the hypercube of 

dimension 4 with Hadamard coin and initial state |00|0000 is presented below: 

 
procedure walk4(int steps) { 

  qureg c[2]; //coin register 

  //vertices register  

  qureg v[4];  

  int i; 

  int m1; 

  int m2; 

  for i=1 to steps { 

    //Hadamard coin  

    H(c);  

 //the first gate 

    Not(c);  

    CCNot(c[0],c[1],v[3]); 

    Not(c); 

    //the second gate 

    Not(c[1]); 

    CCNot(c[0],c[1],v[2]); 

    Not(c[1]); 

    //the third gate 

    Not(c[0]); 

    CCNot(c[0],c[1],v[1]); 

    Not(c[0]); 

    //the last CCNOT gate 

    CCNot(c[0],c[1],v[0]); 

  } 

  measure c,m1; 

  measure v,m2; 

  print "m1 = ",m1, " m2= ", 

m2;   

} 

 

 In the case of n>4, the quantum circuit for the shift operator uses (Controlled)m-

NOT gates. Such gates can be implemented using 2(m-1) CCNOT gates and (m-1) 

ancilla qubits as follows 

 
Fig. 7(Controlled)m-U gate [10] 

A QCL implementation of the (Controlled)m-NOT gate is proposed below: 

 
operator CmNOT(int m, qureg x, qureg y) { 

  qureg a[m-1]; //ancilla qubits  

  int i; 

  CCNot(x[m-1], x[m-2], a[m-2]); 

  for i=3 to m-1 { 

    CCNot(x[m-i],a[m-i+1],a[m-i]);} 

  for i=3 to m-1 step -1 { 

    CCNot(x[m-i],a[m-i+1],a[m-i]);} 

  CCNot(x[m-1], x[m-2], a[m-2]); 

} 
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5. CONCLUSION 

 

Quantum computing promises to find algorithms which can run faster than their 

classical counterparts. In the last years new model of quantum algorithms have 

apperead: the quantum walk based algorithms. The research have shown that quantum 

walks present different behaviour than classical random walks. This paper presented a 

brief overview of quantum walks and a quantum circuit for the shift operator of a 

quantum walk on the hypercube. Also, a proposal for QCL implementation of the 

quantum walk algorithm on the hypercube was presented. In absence of quantum 

devices, quantum computing simulators helps programmers to understand the 

constraints imposed by these devices. In this paper, the QCL quantum language [11] 

was used in order to simulate the quantum walk algorithm. 
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