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1. Why?

 The use of a single scheduling algorithm can lead to
the following problems:

 most of the real time operating systems are certified for
tasks that are much pessimistic that the designer will
thought.

 In the automotive field, the non-preemptive schedulers are
used where the system is safety relevant. The adoption of
this strategy is used because offers a high predictability to
the system, but can lead the system into failure.



2. Overview(1)
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The nMPRA architecture. 

 PC – program counter.

 IFID – Instruction Fetch 

Instruction Decode 

stage. 

 ID/EX – Instruction 

decode–execute stage. 

 EX/MEM – execute-

memory stage.

 MEM/WB – memory-

write back stage.



2. Overview(2)

The simplified nMPRA architecture. 

 The RAM, ALU and ROM are shared 

between multiple resources using only 

one big multiplexer/demultiplexer. 

 Each task will share only RAM, ALU, 

ROM. The register file and the 

program counter will be multiplied. 

This approach will ensure that the 

data will be remain valid after every 

task switch.
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3. Dual priority algorithm (1)

Classes that each task can belong to the dynamic dual priority 

algorithm :

 The class of active tasks, which has the higher priority (the tasks 

will be inserted only in the active task queue (ATQ)) will schedule 

the tasks, based on priorities, only in the Running State (RS) of the 

Scheduler.

 The class of interrupted tasks, which has the second priority (the 

tasks will be inserted only in the interrupted task queue (ITQ)) will 

schedule the tasks, based on priorities, only in the Idle State (IS) of 

the Scheduler.



3. Dual priority algorithm (2)

 The long execution tasks class (significantly exceed the base 

period T corresponding to the priority task), which has the least 

priorities (LTQ): will schedule the tasks, based on ROUND ROBIN 

(RR) algorithm, only in the Idle State (IS) of the Scheduler.
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 Initialization stage of:
- Timer (TRB) used for the Round Robin time stamp and 

also for monitoring the task that is currently running
 - Active tasks queue(ATQ)                                                   a                    
- Interrupt tasks queue(ITQ)                                              a
- Long time task queue(LTQ)                                              a
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1) Initialize the TRB with the value of the time stamp.
2) The timer will start to decrement once the new 
task is in the running state

 ATQ-active task queue.

 ITQ-interrupted task queue.

 LTQ-long task queue.

 TRB-timer Round Robin used 

to supervise the active time 

of the current task and also 

used as a task occurrence for 

the long tasks.

 Running State-processor 

execute code.

 Idle State-the processor 

finishes the execution of code.



3. Dual priority algorithm (3)

 If the TRB and the occurrence of the tasks are not chosen properly, 

the following situation can occur:

 Priority inversion.

 Task starvation.



3. Dual priority algorithm (4)

 Priority inversion: There are 3 tasks 

with different priorities. The task, with 

intermediary priority, is running and 

is interrupted by the second task with 

higher priority. The task that was 

interrupted is now in the ITQ and the 

current task finishes its execution, but 

at the same time, the third task, with 

lower priority became active. In this 

particularly case the task from ITQ 

will not run, even though it has higher 

priority, because the new task is 

located into the ATQ.
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3. Dual priority algorithm (5)

 Task starvation: Assume that we 

have 3 tasks with different 

recurrence and same priorities. If 

one task is interrupted by another 

task, with higher priority, this task 

will be introduced into the ITQ. 

From this point forward all of the 

tasks are going to succeed 

properly forcing the Scheduler to 

remain in the RS. Because the ITQ 

and LTQ are used only in the IS, 

this task will starve. 

Task 
Priority

High

Low
T1msT4ms T2ms T1msT2ms

Promoted to 
ITQ

Active tasks

Interrupted tasks

Long tasks

TimeScheduler 
State

Running 
State

Idle 
State

Time



3. Dual priority algorithm (6)

 If these two requirements are not met, the scheduler will not 

work properly because one of the two unfortunate situations, 

explained above, will happen. This situation is not a 

consequence of the scheduling algorithm being implemented in 

hardware, the same situation could happened to a scheduling 

algorithm implemented in software. 

 If the system is overloaded with tasks the system can be 

configured to work only in a Round Robin manner, each task 

will have the same occurrence.



4. Conclusions(4)

 The algorithm presented will ensure the execution of each task, 

even for those states that are different from normal state, only 

if the occurrence of the  tasks and the time for the TRB is 

chosen properly.

 The nMPRA microcontroller provides very good switching time, 

constant 5 machine cycles.

 Reduce the comsuption of memory of the Operating 

System(ROM, RAM).
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