
Dual Priority Scheduling algorithm used
in the nMPRA Microcontrollers

Authors,
ph.d. eng. Lucian ANDRIEȘ

prof.dr.eng. Vasile Gheorghiță GĂITAN

SINAIA 2014

Contents

1. Why?

2. Overview

3. Dual priority algorithm

4. Conclusions

5. References

1. Why?

 The use of a single scheduling algorithm can lead to
the following problems:

 most of the real time operating systems are certified for
tasks that are much pessimistic that the designer will
thought.

 In the automotive field, the non-preemptive schedulers are
used where the system is safety relevant. The adoption of
this strategy is used because offers a high predictability to
the system, but can lead the system into failure.

2. Overview(1)

Banked
register file

0 1 2

n-11

n

Instruction
read

Instruction memory

IFID

0 1 2

n-1
1

n

0 1 2

n-1
1

n

ALU

0 1 2

n-1
1

n

Data read

Data memory

IDEX EXMEM MEMWB

0 1 2

n-1
1

n

Forward unit 1Forward unit 1

nHSE

Hazard Detection
Unit

Datapath Control

PC

PC
PC

PC
0

1
2

n-1

Inhibit

Buss
Controller

Master0

M
u

lt
ip

le
xe

r/
D

em
u

lt
ip

le
xe

r
B

u
ss

Scheduler

Slave0 Arbiter

The nMPRA architecture.

 PC – program counter.

 IFID – Instruction Fetch

Instruction Decode

stage.

 ID/EX – Instruction

decode–execute stage.

 EX/MEM – execute-

memory stage.

 MEM/WB – memory-

write back stage.

2. Overview(2)

The simplified nMPRA architecture.

 The RAM, ALU and ROM are shared

between multiple resources using only

one big multiplexer/demultiplexer.

 Each task will share only RAM, ALU,

ROM. The register file and the

program counter will be multiplied.

This approach will ensure that the

data will be remain valid after every

task switch.

M
U

X
/D

E
M

U
X

PC ROM

RAM

ALU
SelectTask[2..0]

3. Dual priority algorithm (1)

Classes that each task can belong to the dynamic dual priority

algorithm :

 The class of active tasks, which has the higher priority (the tasks

will be inserted only in the active task queue (ATQ)) will schedule

the tasks, based on priorities, only in the Running State (RS) of the

Scheduler.

 The class of interrupted tasks, which has the second priority (the

tasks will be inserted only in the interrupted task queue (ITQ)) will

schedule the tasks, based on priorities, only in the Idle State (IS) of

the Scheduler.

3. Dual priority algorithm (2)

 The long execution tasks class (significantly exceed the base

period T corresponding to the priority task), which has the least

priorities (LTQ): will schedule the tasks, based on ROUND ROBIN

(RR) algorithm, only in the Idle State (IS) of the Scheduler.

Running State

LTQ not
empty

Tasks promoted to long tasks

Idle State

If another Task
became active

ITQ

Tsk 1
Tsk 2

...

Tsk n

ATQ

Tsk 1
Tsk 2

...

Tsk n

No

LTQ

Tsk 1
Tsk 2

...

Tsk n

If Task x is running

If another Task
became active

If the Task has a
high priority

Yes

Move Task x
into ITQ

Yes

If another Task
became active

No

If TBR elapsed

No

Move Task x
into LTQ

YesNo

If Task x finish
successfully

Yes

No

No

Dispacher

1

Priorities Scheduling

Tsk 1
Tsk 2

...

Tsk n

Priority

n
...
2
1

Round Robin Scheduling

Tsk 1

...

Tsk 2 Tsk n
Yes

ITQ not
empty

Tasks promoted to Interrupted state

Yes

Yes

No

No

Yes

StartStart

 Initialization stage of:
- Timer (TRB) used for the Round Robin time stamp and

also for monitoring the task that is currently running
 - Active tasks queue(ATQ) a
- Interrupt tasks queue(ITQ) a
- Long time task queue(LTQ) a

Move Task x
into ATQ

Yes

No

1) Initialize the TRB with the value of the time stamp.
2) The timer will start to decrement once the new
task is in the running state

 ATQ-active task queue.

 ITQ-interrupted task queue.

 LTQ-long task queue.

 TRB-timer Round Robin used

to supervise the active time

of the current task and also

used as a task occurrence for

the long tasks.

 Running State-processor

execute code.

 Idle State-the processor

finishes the execution of code.

3. Dual priority algorithm (3)

 If the TRB and the occurrence of the tasks are not chosen properly,

the following situation can occur:

 Priority inversion.

 Task starvation.

3. Dual priority algorithm (4)

 Priority inversion: There are 3 tasks

with different priorities. The task, with

intermediary priority, is running and

is interrupted by the second task with

higher priority. The task that was

interrupted is now in the ITQ and the

current task finishes its execution, but

at the same time, the third task, with

lower priority became active. In this

particularly case the task from ITQ

will not run, even though it has higher

priority, because the new task is

located into the ATQ.

Task
Priority

High

Low

T2ms

Promoted to
ITQ

Active tasks

Interrupted tasks

Long tasks

Time

Running
State

Idle
State

Time

T1ms

T4ms

3. Dual priority algorithm (5)

 Task starvation: Assume that we

have 3 tasks with different

recurrence and same priorities. If

one task is interrupted by another

task, with higher priority, this task

will be introduced into the ITQ.

From this point forward all of the

tasks are going to succeed

properly forcing the Scheduler to

remain in the RS. Because the ITQ

and LTQ are used only in the IS,

this task will starve.

Task
Priority

High

Low
T1msT4ms T2ms T1msT2ms

Promoted to
ITQ

Active tasks

Interrupted tasks

Long tasks

TimeScheduler
State

Running
State

Idle
State

Time

3. Dual priority algorithm (6)

 If these two requirements are not met, the scheduler will not

work properly because one of the two unfortunate situations,

explained above, will happen. This situation is not a

consequence of the scheduling algorithm being implemented in

hardware, the same situation could happened to a scheduling

algorithm implemented in software.

 If the system is overloaded with tasks the system can be

configured to work only in a Round Robin manner, each task

will have the same occurrence.

4. Conclusions(4)

 The algorithm presented will ensure the execution of each task,

even for those states that are different from normal state, only

if the occurrence of the tasks and the time for the TRB is

chosen properly.

 The nMPRA microcontroller provides very good switching time,

constant 5 machine cycles.

 Reduce the comsuption of memory of the Operating

System(ROM, RAM).

 N.C. Gaitan, ” Real-time Acquisition of the Distributed Data by using an Intelligent System”, Electronics and Electrical
Engineering JOURNAL, Kaunas Universtiy (Lithuania) No. 8 (104), pp. 13-18, ISSN 1392-1215, October 2010.

 C. Liu, 1. Layland, "Scheduling algorithms for multiprogramming in real-time environment," Journal of ACM, 1973,20(1),
pp.46-61.

 Yun Wang and Manas Saksena “Scheduling Fixed-Priority Tasks with Preemption Threshold”, RTCSA’99, Hongkong, December
1999.

 William Lamie. Preemption-threshold. White Paper, Express Logic Inc. Available at http://rtos.com/products/threadx/.

 J. M. Ban`us, A. Arenas and J. Labarta, “Dual priority algorithm to schedule real-time tasks in a shared memory
multiprocessor”, International Parallel and Distributed Processing Symposium, 2003.

 E. Dodiu, V.G. Gaitan, A. Graur, “Custom designed CPU architecture based on a hardware scheduler and independent
pipeline registers – architecture description“, IEEE 35’th Jubilee International Convention on Information and Communication
Technology, Electronics and Microelectronics, Croatia, May 2012.

 E. Dodiu and V.G. Gaitan, “Custom designed CPU architecture based on a hardware scheduler and independent pipeline
registers – concept and theory of operation“, 2012 IEEE EIT International Conference on Electro-Information Technology,
Indianapolis, IN, USA, 6-8 May 2012, ISBN: 978-1-4673-0818-2, ISSN: 2154-0373.

 V.G. Gaitan, N.C. Gaitan, I. Ungurean, “CPU Arhitecture based on a Hardware Scheduler and Independent Pipeline
Registers”, in review, IEEE Transactions on VLSI System, 2014.

 N. Gaitan and A. Lucian, “Using Dual Priority Scheduling to Improve the Resource Utilization in the nMPRA Microcontrollers”,
IEEE 12th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 15-17, 2014.

5. References

