
Hardware Event Handling in

the Hardware Real-Time

Operating Systems

Elena-Eugenia (CIOBANU) MOISUC

Alexandru-Bogdan LARIONESCU

Ioan UNGUREAN

Department of Electrical Engineering and Computer Science

Stefan cel Mare University Suceava, Romania

18th International Conference on System Theory, Control and Computing

October 17-19, 2014, Sinaia, Romania

This paper was supported by the project “Sustainable performance in doctoral

and post-doctoral research PERFORM–Contract no. POSDRU/159/

1.5/S/138963”, project co-funded from European Social Fund through Sectorial

Operational Program Human Resources 2007-2013.

Events in RTS (Real Time Systems):

 time events

 watchdog timer events

 deadline events

 interrupt events

 mutex events

 synchronization and

inter-task communication events

INTRODUCTION

PROBLEM #1

RTOS FOR EMBEDDED SYSTEM

Can’t allow a task to synchronize simultaneously

with multiple events utilized for resource sharing,

synchronization and communication between

tasks such as semaphores, flags, mutexes,

signals, events, messages.

PROBLEM #2

GENERAL-PURPOSE PROCESSORS

FOR EMBEDDED SYSTEMS

Inefficient power consumption and non-

deterministic performances Use of an

oversized platform are not suitable for

embedded systems with low power

consumption requirements and real-time

capabilities

SOLUTIONS

Hardware Event Handling in nMPRA

 Section II – the nMPRA;

 Section III – the hardware events

handling;

 Section IV – PCi modified architecture;

 Section V – the final conclusions.

THE NOVELTY

The new hardware implementation of the

event selection mechanism using trap

Using a hardware prioritization scheme for the n-task

Multi Pipeline Register Architecture (nMPRA)

The architecture of PC register and the

introduction of the ret_esr (return from

the event service routine) instruction

Corresponding sCPUi (PCi)

nMPRA
 a hardware implemented support for event prioritization and treating

 MPRA n-task MPRA (nMPRA): to replicate the pipeline

registers; to create multiple instances of the CPU semi CPU for

every task i (sCPUi)

WHAT WE AIM FOR

 to improve through hardware the performances of

RTOS for microcontrollers

 to switch faster between the tasks

 to improve the response time to external events

 to improve the behavior of the interrupts, which

are treated as events in this case

 to offer several types of inter-process

communication primitives (messages, mutexes,

and so on)

The nMPRA an original hardware structure
utilized for task scheduling, both static and dynamic,
and provides unitary events management.

Global Events Prioritization

 every sCPUi has attached an Event Priority

Register (EPRi), which contains the priority

level of each type of event associated with

that sCPUi

 the priority is different for each type of events

 The priority level of each event category can be static or it can be changed

dynamically, depending on the system’s demands.

 If there are multiple active events in the selected category, it must be done

another selection of the event from that category that will actually be

treated first.

 This second selection depends on the type of the event category.

 The

prioritization

scheme

selects the

active event

category

with the

highest

priority, in

order to be

treated

Global event prioritization scheme

Selection of the highest priority event handler address

 It obtains the address of the event service routine

associated with the selected event (the event

service routine is executed by the sCPUi task)

PROGRAM COUNTER ARCHITECTURE

 an event occurs the associated task become ready

for executions the PCi

(corresponding sCPUi), is set by the content of the trap

register (the address of the associated routine for the event

occurred)

it has a higher priority that the task in the execution state

Event vector registers

Program Counter architecture

CONCLUSIONS

 The advantage of the hardware treating of

the events is reducing the time necessary to

identify the source of the event and to

launch the appropriate event servicing

routine.

 The prioritization scheme is simple and can

be applied to all the events.

 It permits the introduction of new events

updating the global event prioritization

scheme and inserting a new trap register for

each new event category.

FUTURE PAPERS

The optimization of the

implementation for mutex

events and synchronization

and communication primitives

