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Abstract— In computer science, for embedded field only two 

types of microcontrollers exists, that can be used to develop a 

working system. You can use a single core or a multicore which is 

much faster but will not be the equivalent of a single core 

multiple with the numbers of cores, because a small part from the 

power will be used for inter process communications. Our 

approach is a little bit different because we use a single core CPU 

that have a number of finite task that act like different CPU’s. In 

this new architecture there is no need for inter process 

communication because the processor is a single core and the 

hardware tasks use the same resources as others. The peripherals 

of this architecture will improve interrupt latencies and task 

switching times, what makes this microcontroller the best choice 

when it comes in interrupt response time. 

Keywords—real time system, static hardware scheduler, 

microcontroller. 

I.  INTRODUCTION 

Usually, embedded systems contains a real time operating 
system that can perform very complex tasks for small or big 
systems. An embedded system can be found almost anywhere 
on this planet, from the watch at your wrist, the parking barrier 
that will allow you to enter into the parking space till to the 
spaceship and satellites from the sky. 

For each application areas different microcontrollers and 
operating systems are used because of different requirements 
of the operating environment. 

In this article we are going to focus on a small niche of the 
real time embedded field, the field of microcontrollers that 
need a fast response time and a small jitter for external 
interrupts.  

Usually for this kind of applications the programming 
language used is C, because provide low level access to 
memory and have minimal run tine support ([1]). The C 
programming language is considered a low level programming 
language that was designed to encourage cross platform 
programming. 

The C++ language is also a general purpose programming 
language that provide facilities for low-level memory 

manipulation, but it cannot be used in the embedded field 
because the gpp compiler ([2] C++ compiler), will generate a 
lot more machine code than the gcc (C compiler)  compiler for 
C. The gpp compiler will generate much more machine code 
because of the object orientated nature: 

 Code will be generated for constructor and destructor. 
The code of destructor will never be called because an 
embedded system is supposed to work nonstop. 

 Code will be generated for run time polymorphism 

 Code will be generated for protective layer of a class: 
private, protected. 

The C language compared with C++ seems to be really 
small, but the simplicity makes this programming language so 
powerful. 

We chose the C language, to create the environment for a 
microcontroller that is a single core, but its hardware threads 
act like separate processors, because the architecture being 
developed, is going to be used for fast task switch and small 
interrupt latencies. 

In the following chapter, the way that a gcc compiler can 
be used to generate code for this kind of architecture will be 
presented. The programming paradigm for this architecture 
requires, from the programmer, very good knowledge about 
hardware, programming language and compilers.  

This article describe the programming paradigms of 
processor architecture detailed in [3] and highlights the 
consequences that appear when a processor is using hardware 
tasks and a compiler that is not build for this kind of 
architecture. 

This paper is organized as follows. The programming of 
nMPRA and NHSE architecture is presented in Chapter II 
which consists of initialization of the SCPUi followed by 
examples how to use the hardware task and programming 
paradigms. The final conclusions are drawn in Chapter III. 
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II. PROGRAMMING PARADIGM OF NMPRA AND NHSE 

ARCHITECTURE 

In article [3] is presented a processor architecture that offer 
hardware support for real time operating system (nHSE) and 
hardware synchronization between tasks (nMPRA): 

 nMPRA (multiple pipeline registers architecture for n 
tasks): offer support for hardware synchronization 
between tasks and peripherals. 

 nHSE (hardware scheduler engine for n tasks): offer 
support for static and dynamic hardware scheduler for 
n tasks. 

Writing code in assembler or in a high level programming 
language the compiler will generate machine code that will be 
executed sequentially. The used resources are only the 32 
registers that are used for local variables, function call and 
normal computation. 

The new architecture offers some important advantages: 

 Fast response time for a task switch. The stack and 
registers are not used for the context switch. 

 No task can alter the state of another task. 

 The event’s that may appear will be served faster. 

The first two advantages changed the programming 
paradigm of a single core microcontroller because the 
hardware tasks (Semi processor i - SCPUi) are acting like 
independent control process unit (CPU) despite the fact that 
it’s not the case. 

The MIPS32 Release1 architecture was used and tested 
using the gcc toolchain built from the following tools and the 
C programming language: 

 binutils-2.24. 

 gcc-4.9.1. 

 gmp-6.0.0a. 

 mpc-1.0.2. 

 mpfr-3.1.2. 

 newlib-2.1.0. 

The new paradigm will be detailed in the following lines. 

A. SCPUi initialization 

Each SCPUi must initialize its own registers and 

coprocessor 2 (COP2) module correctly for a proper operation 

because these hardware resources are not shared (Figure 1).  

After RESET only SCPU0 is active and must be used to 

initialize the others SCPUi in the following steps: 

 SCPU0 will set the recurrence of each SCPUi 
(function initThread, line 23 from below code 
example) with the lowest recurrence starting with the 
least SCPUi priority because the SCPU0 (line 26 from 
below code example) must be the last task that is 
called before initialization of the Scheduler ([3]). Only 
SCPU0 has the rights for configuring the Scheduler. 

 SCPU0 configure the Scheduler to use a non-
preemptive algorithm. 

 SCPU0 configure the pointer of each SCPUi task (line 
44, 45 from below code example) from the Scheduler 
peripheral with the address of a function that will 
initialize the registers and local registers of nHSE, 
nHSE_lr. Each init function for SCPUi, after the 
initialization has finished will inform the Scheduler 
that the task has finished successfully and will enter to 
an endless loop. If not, the task will run forever 
because the Scheduler will consider that the task is 
still running.  

 

 The first task that will start to execute code will be the 
task with less priority, in our case task1, followed by 
the task with higher priority 

Code example for SCPUi initialization of two tasks: 

1. #define SCHEDULER_ADDR  0xE0000000     

2. #define REGISTER_ASSIGMENT(val) {\ 

3.     __reg = (unsigned long)(val);  

4.     asm("addiu   $8,$8, 0\n\t");\ 

5. }     

6. //force variable _reg to be placed in register $8 

7. volatile register unsigned long __reg asm ("$8");   

8.    

9. inline void taskFinishExecution(void){ 

10.     REGISTER_ASSIGMENT(0); asm ("mtc2 $8, $31"); 

11. }   

12.      

13. void initThread(void);     

14. void Task0Init();     

15. void Task1Init();     

16.      

17. void main(void){     

18.   initThread();     

19.      

20.   while(1);     

21. }     

22.      

StartStart

Set SCPUi with the lowest 

recurrence starting with the least 

SCPUi priority 

Nonpreemptive scheduling

Set the address for the boot 
function for all SCPUi

Wait for the Scheduler to start 
working

WaitWait

 
Figure 1 - Boot process for SCPUi 
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23. void initThread(void){     

24.    //SCPU1, SCPU0 recurrence     

25.    *((volatile uint32_t*)SCHEDULER_ADDR+3) = 300;//300 machine cycles for 

SCPU1  

26.    *((volatile uint32_t*)SCHEDULER_ADDR+2) = 10; //10 machine cycles for SCPU0 

in order to start immediately 

27.      

28.     /*Scheduler preemptive, no prescaler for SCPUi recurrence 

29.     Bits: 0-3: SCH_TMR1 prescaller (SCPU0 clock prescaller)   

30.           4-7: SCH_TMR2 prescaller (SCPU1 clock prescaller)  

31.           8-11: SCH_TMR3 prescaller (SCPU2 clock prescaller)  

32.           12-15: SCH_TMR4 prescaller (SCPU3 clock prescaller)  

33.           16-19: SCH_TMR5 prescaller (SCPU4 clock prescaller)  

34.           20-23: RoundRobin timeStamp prescaller 

35.           27: enable: preemtiv, disable: nepriemtiv   

36.           28: enable SCPU1   

37.           29: enable SCPU2   

38.           30: enable SCPU3   

39.           31: enable SCPU4  

40.      */     

41.     *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF8111111;     

42.      

43.     /*initialize the address of each task*/     

44.     *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = &Task0Init;     

45.     *((volatile uint32_t*)SCHEDULER_ADDR+0x11) = &Task1Init;     

46.      

47.     /*Scheduler nonpreemptive, no prescaler for SCPUi recurrence*/     

48.     *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF0111111;     

49.     /*the Scheduler will start running*/     

50.     /*enable the Scheduler*/     

51.     *((volatile uint32_t*)SCHEDULER_ADDR+0x0D) = 1;     

52.      

53.     taskFinishExecution();     

54. }     

55. void Task0Init() {     

56.     asm( "jal initTask0_NHSE_CP2 \n\t"//jump to function         

57.          "nop\n\t"     

58.          "jal SCHEDULER_Init\n\t"//jump to function         

59.          "nop\n\t");                 

60.      taskFinishExecution();     

61. }     

62. void Task1Init(){     

63.     asm("jal initTask1_NHSE_CP2 \n\t" //jump to function     

64.         "nop\n\t");      

65.     /*reset the recurrence of the task*/         

66.     *((volatile uint32_t*)SCHEDULER_ADDR+3) = 0xFFFF;        

67.      taskFinishExecution();     

68. }   

Where:  

 SCHEDULER_ADDR (line 1 from above code 
example) is the base address of the Scheduler 
peripheral that is located on the slow bus.   

 initTask0_NHSE_CP2 (line 56 from above code 
example) and initTask1_NHSE_CP2 (line 63 from 
above code example)  are the functions that are called 
to initialize the COP2 for task 0 and task 1. Each task 
will have a different function for initialization because 
the nHSE_lr can behave differently for each task. 

 SCHEDULER_Init (line 58 from above code 
example)  is the function that is called to initialize the 

scheduler with the correct recurrence of  all available 
tasks. 

 SCH_Task0Finished() (line 60 from above code 
example)  and SCH_Task1Finished() (line 67 from 
above code example) function will inform the 
Scheduler that the tasks has finished successfully and 
will enter deep sleep produce by COP2. 

B. Using the hardware tasks 

In order to use the power of the hardware tasks, the task 

recurrence (the recurrence, which each task will be called) and 

start address of each task function (Figure 2), must be 

configure correctly. 

 
 

Code example for initialization of two tasks: 

1. static void Task0Function(void){}   

2. static void Task1Function(void){}   

3.    

4. void main(void)   

5. {   

6.    //SCPU0, SCPU1 recurrence   

7.    *((volatile uint32_t*)SCHEDULER_ADDR+2) = 1000;//1000 machine cycles for 

SCPU0  

8.    *((volatile uint32_t*)SCHEDULER_ADDR+3) = 2000;//2000 machine cycles for 

SCPU1    

9.    

10.    /*Round robin timer that is used to supervise the active time   of the  

11.      current task.*/   

12.    *((volatile uint32_t*)SCHEDULER_ADDR+1) = 1000;//RBTM timer(machine cycles)  

13.    

14.     /*Scheduler preemptive, no prescaler for SCPUi recurrence 

15.     Bits: 0-3: SCH_TMR1 prescaller (SCPU0 clock prescaller)   

16.           4-7: SCH_TMR2 prescaller (SCPU1 clock prescaller)  

17.           8-11: SCH_TMR3 prescaller (SCPU2 clock prescaller)  

18.           12-15: SCH_TMR4 prescaller (SCPU3 clock prescaller)  

19.           16-19: SCH_TMR5 prescaller (SCPU4 clock prescaller)  

20.           20-23: RoundRobin timeStamp prescaller 

21.           27: enable: preemtiv, disable: nepriemtiv   

22.           28: enable SCPU1   

23.           29: enable SCPU2   

24.           30: enable SCPU3   

25.           31: enable SCPU4   

26.     */   

27.    *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF8111111;   

StartStart

Set SCUi with the correct 

recurrence for all used threads 

Nonpreemptive/Preemptive 

scheduling

Set the address for the boot 
function for all SCUi

Wait for the Scheduler to start 
working

WaitWait

 
Figure 2 – Steps for Scheduler configuration 
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28.    

29.    /*initialize the start address of each task*/   

30.    *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = &Task0Function;  

31.    *((volatile uint32_t*)SCHEDULER_ADDR+0x11) = &Task1Function;   

32.    /*the Scheduler will start running*/   

33.    *((volatile uint32_t*)SCHEDULER_ADDR+0x0D) = 1;   

34.    

35.    while(1);   

36. }   

 

    In the example above the Scheduler ([3]) module can be 
access as any other peripheral from the slow bus and the code 
for void main function is executed by the SCPU0 for the first 
time. After the initialization of all hardware task is finished the 
Scheduler will enable the task with the smaller recurrence 
from the system to start executing code.  

C. Using shared variables between tasks 

Using global variables that are shared between SCPUi, the 

compiler might consider that the code generation can be 

optimize (internal implementation of the compiler) to use local 

variables that can be stored in registers. This case may appear 

when a variable is initializing globally and read in each task. 

Only the task used for initialization of this variable will see the 

value because is the first task to execute code. In this case the 

hardware task may not working properly because it’s 

expecting a value that is not present. For eg: A global variable 

that is used to enable the reading of an analog pin. The first 

task that execute the initialization routine will use the correct 

value from the variable while the other tasks will not read the 

analog pin because the value that enable the readings is not 

present. 

The same result will be if a variable is modified in a task 

and read in other task, because the variable will be optimize 

by the compiler and used locally.  
To avoid this kind of behavior the variable must be forced 

to be placed in RAM (MIPS32 architecture cannot perform 
operation in directly in RAM, therefore the values from RAM 
must be loaded into the local registers) by the compiler or to 
use the mechanisms provided by the nHSE architecture, the 
hardware mutexes that are atomic operations. 

D. Interfacing with COPROCESSOR 2 (nHSE_lr) 

The local registers, of nHSE architecture, which are 

implemented as COP2, are appointed as nHSE_lr and the 

global registers of nHSE are appointed as nHSE_gr. 

A coprocessor can be used to supplement the function of 

the CPU. The MIPS architecture support 4 coprocessors: 

 Coprocessor 0 (COP0): supports exceptions and 
virtual memory system. 

 Coprocessor 1 (COP1): reserved for floating point 
custom implementation. 

 Coprocessor 2 (COP2): available for user defined 
implementation. 

 Coprocessor 3 (COP3): reserved for floating point 
module in Release 1 implementation of the MIPS64 

architecture and on all release 2 implementations of 
the architecture. 

The MIPS32 architecture has provided a means by which 

can be upgraded to do custom computation.  In this case we 

discuss about the COP2 that has some standard assembler 

instruction that can be used to interface with: 

 mtc2 – move word to coprocessor 2 

 mfc2 – move word from coprocessor 2 

These two assembler instructions are enough for a proper 
use of the new module. The gcc compiler is not offering 
support for the C programming language to work with the 
COP2 assembler instructions. Therefore we had to mix C with 
assembler instructions.  

1) Writing to nHSE_lr registers 

When, only one variable is used, inside a function, the 

register $8 (t0) is used to store the value (Table 1). 

Table 1 – Assembler code generated from C  
C language Generated assembler 

1. uint32_t localVariable = 0;  1. move    t0,a0   

2. addiu   t0,t0,0 

Further we will present a function that can be used to write 

into the registers from COP2 (Table 2): 

Table 2 – Function used to write to nHSE_lr registers 
C language Generated assembler 

1. //force variable _reg to be placed in  

2. //register $8 

3. volatile register  

4. unsigned long __reg asm ("$8");   

5.    

6. inline void crTR_SET(unsigned long val){ 

7.     //val will be assigned to reg $8 

8.     __reg = (unsigned long)(val);   

9.     asm("addiu  $8,$8, 0\n\t");   

10.     //load reg $8 value to reg $0(crTR) 

11.     asm("mtc2 $8, $0");   

12. }  

1. 00000e14 <crTR_SET>:   

2. e14: 00804021     move t0,a0 

3. e18: 25080000     addiu t0,t0,0  

4. e1c: 03e00008     jr ra  

5. e20: 48880000    mtc2 t0,$0  

 

2) Reading from nHSE_lr registers 

The same principle applied to writing to nHSE_lr registers 

will also be applied in this context as can be seen in Table 3:  

Table 3 - Function used to read from nHSE_lr registers 
C language Generated assembler 

1. //force variable _reg to be placed in  

2. //register $8 

3. volatile register  

4. unsigned long __reg asm ("$8");   

5.    

6. inline unsigned long crTR_GET(void){ 

7.    //load reg $0(crTR) value into _reg  

8.    //variable  

9.     asm("mfc2 $8, $0");   

10.     return __reg;   

11. }   

1. 00000e24 <crTR_GET>:   

2. e24: 48080000    mfc2 t0,$0  

3. e28: 03e00008    jr ra   

1. e2c: 01001021    move v0,t0 
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E. Interfacing nHSE_lr with Scheduler 

The interaction between the nHSE_lr and the Scheduler is 

absolutely necessary because the COP2 instructions get to be 

very powerful. The mtc2 instruction can be used to create 

more software custom instructions that can be used to: 

 Create an atomic instruction that can be executed in 2 
machine cycles. nHSE_lr is used to write directly, at a 
specified address the data, into nHSE_gr peripheral. 

 Create an atomic instruction that can force a SCPUi 
thread to enter into a true sleep mode. nHSE_lr will 
inform the Scheduler that the task entered into sleep 
mode in order not to promote the current task to long 
task queue (LTQ [3])  . 

The custom instructions are created in software by writing 
the instructions mnemonic into a 32 bit register which is then 
used to be send to the nHSE_lr. The register used is $31.  

1) Instruction used to signal the finish of a task 

Table 4 - Instruction used to signal the finish of a task 
Instruction  0                       3 4                31 

taskFinishExecution Opcode 

0 

n/a 

The instruction will alert the Scheduler, by hardware that 

the task has finished successfully and can be restarted again 

(Table 4). 

2) Instruction used to force a SCPUi to enter sleep mode 

Table 5 - Instruction used to enter sleep mode 
Instruction  0                3 4                               31 

taskSleep Opcode 

1 

n/a 

To decode the instruction nHSE_lr need only the opcode 

because the behavior is predefined in the module. The 

instruction will stall all the pipeline registers, in this way the 

SCPUi state will be freeze (Table 5). 

3) Instruction used to Lock/Release a mutex 

Table 6 - Instruction used to Lock/Release a mutex 
Instruction 0                 3  4                11  12                   19 

mutexLock Opcode  

2 

Task Id Mutex Id 

A mutex can be released only by the task that locked it. If 

another task try to lock a mutex that is already locked nothing 

will happened. The same instruction is used to release the 

mutex when is called the second time.  

Mutex Id (Table 6) will be used to compute the address 

and the Task Id for data that are going to be written into 

grMutex registers from nHSE_gr. 

4) Instruction used to stop a SCPUi from execution 

Table 7 - Instruction used to stop a SCPUi from execution 
Instruction 0                 3  4                27  28                   31 

CRMSTOP Opcode  
3 

CR0MSTOP CR0_STOP_ADDR 

 
Each bit from the register CR0MSTOP will cause the 

SCPUi to be stopped from the execution immediately (Table 
7). 

5) Instruction used to reset a SCPUi 

Table 8 - Instruction used to reset a SCPUi from execution 
Instruction 0                3  4              27  28                         31 

CRMRESET Opcode  

3 

CR0RESET CR0_RESET_ADDR 

III. CONCLUSIONS 

In this paper we created the development environment for 

the nHSE architecture that is functional and can be used to 

create applications. The drawback of this architecture is a 

more restrictive environment that the one with a single core, 

because the gcc compiler will generate code only for single 

core microcontrollers. The programming parading is not that 

easy to understand because of the knowledge in embedded and 

hardware that is needed to handle this environment. 

Despite the fact that we need big amount of programming 

experience in embedded, the architecture along with the C 

programming language can create really fast applications that 

can handle a much more amount of external interrupts and 

internal  events than an ordinary microcontroller. 

Also with this architecture we can create more secure and 

hard to crack applications, when it comes to third party, 

because no SCPUi can alter the internal state of another 

SCPUi.  

IV. FUTURE WORK 

A point that must be taken in consideration for future 

development is to create an easier framework for the 

programmer or create a custom compiler for this processor 

architecture, in order to make this approach more popular. 
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pp. 693698
Postolache, Mihai Gheorghe Asachi Tech. Univ. of Iasi

CAN (Controller Area Network) and TIA485 are  two of  the most used standards  in  fieldbus systems. While
CAN ISO IS11898  includes complete data  link  layer specifications on top of  its physical  layer, TIA485 only
addresses the physical  layer of  the 7layer OSI model. Other  communication parameters  like  speed,  format,
and  data  transmission  protocol  are  not  specified  by  RS485  in  order  to  provide  interoperability  of  similar
devices  from  different  manufacturers.  After  a  brief  introduction  and  comparison  of  the  two  communication
protocols,  the  paper  investigates  to  what  extent  the  CANopen  specification    an  application  level  protocol
developed primarily for CAN networks  should be used in TIA485based fieldbus networks in order to provide
the  user  an  application  programming  interface  (API)  independent  of  the  physical  layer.  Selected  and
customized  CANopen  services  have  been  implemented  and  tested  on  a  network  of  microcontrollerbased
stations equipped with CAN ISO 11898 and TIA485 communication interfaces.
12:1012:30 ThA5.5
Future House Automation, pp. 699704
Florea, Adrian Lucian Blaga Univ. of Sibiu
Bancioiu, Iosif Lucian Blaga Univ. of Sibiu

In this paper, we propose the future house automation, a PLCbased embedded system that aims reducing the
house energy consumption by optimizing  the entire hardware assembly and software algorithms. The project
started from the idea of designing a selfcontrolled house, to increase user's comfort  in his daily environment,
reducing  the  cost  and  optimizing  the  energy  consumption.  Our  embedded  application  represents  a  green
solution  into a growing number of environmentally  aware  consumers,  very  suitable  for  the market  of  energy
efficient control systems. We provide a cheap solution for developing by everyone its own automation system
control  house.  Therefore,  our  project  contributes  for  helping  the  elderly,  which  represents  another  social
challenge with global character.
12:3012:50 ThA5.6
Programming Paradigm of a Microcontroller with Hardware Scheduler Engine and Independent
Pipeline Registers – a Software Approach, pp. 705710
Andries, Lucian Stefan Cel Mare Univ. of Suceava
Gaitan, Vasile Gheorghita Stefan Cel Mare Univ. of Suceava
Moisuc (Ciobanu), ElenaEugenia Stefan Cel Mare Univ. of Suceava

In computer science, for embedded field only two types of microcontrollers exists, that can be used to develop
a working system. You can use a single core or a multicore which is much faster but will not be the equivalent
of a single core multiple with the numbers of cores, because a small part from the power will be used for inter
process communications. Our approach is a little bit different because we use a single core CPU that have a
number of  finite  task that act  like different CPU's.  In  this new architecture  there  is no need for  inter  process
communication  because  the  processor  is  a  single  core  and  the  hardware  tasks  use  the  same  resources  as
others.  The  peripherals  of  this  architecture  will  improve  interrupt  latencies  and  task  switching  times,  what
makes this microcontroller the best choice when it comes in interrupt response time.
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