
Programming paradigm of a Microcontroller with

Hardware Scheduler Engine and Independent Pipeline

Registers – A software approach

Lucian ANDRIES1,2, Vasile Gheorghita GAITAN1,2 , Elena-Eugenia MOISUC1,2
1Faculty of Electrical Engineering and Computer Science, Ștefan cel Mare University of Suceava

2Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems

for Fabrication and Control (MANSiD), Ștefan cel Mare University of Suceava

Suceava, Romania

andries.lucian2002ro@gmail.com, gaitan@eed.usv.ro

Abstract— In computer science, for embedded field only two

types of microcontrollers exists, that can be used to develop a

working system. You can use a single core or a multicore which is

much faster but will not be the equivalent of a single core

multiple with the numbers of cores, because a small part from the

power will be used for inter process communications. Our

approach is a little bit different because we use a single core CPU

that have a number of finite task that act like different CPU’s. In

this new architecture there is no need for inter process

communication because the processor is a single core and the

hardware tasks use the same resources as others. The peripherals

of this architecture will improve interrupt latencies and task

switching times, what makes this microcontroller the best choice

when it comes in interrupt response time.

Keywords—real time system, static hardware scheduler,

microcontroller.

I. INTRODUCTION

Usually, embedded systems contains a real time operating
system that can perform very complex tasks for small or big
systems. An embedded system can be found almost anywhere
on this planet, from the watch at your wrist, the parking barrier
that will allow you to enter into the parking space till to the
spaceship and satellites from the sky.

For each application areas different microcontrollers and
operating systems are used because of different requirements
of the operating environment.

In this article we are going to focus on a small niche of the
real time embedded field, the field of microcontrollers that
need a fast response time and a small jitter for external
interrupts.

Usually for this kind of applications the programming
language used is C, because provide low level access to
memory and have minimal run tine support ([1]). The C
programming language is considered a low level programming
language that was designed to encourage cross platform
programming.

The C++ language is also a general purpose programming
language that provide facilities for low-level memory

manipulation, but it cannot be used in the embedded field
because the gpp compiler ([2] C++ compiler), will generate a
lot more machine code than the gcc (C compiler) compiler for
C. The gpp compiler will generate much more machine code
because of the object orientated nature:

 Code will be generated for constructor and destructor.
The code of destructor will never be called because an
embedded system is supposed to work nonstop.

 Code will be generated for run time polymorphism

 Code will be generated for protective layer of a class:
private, protected.

The C language compared with C++ seems to be really
small, but the simplicity makes this programming language so
powerful.

We chose the C language, to create the environment for a
microcontroller that is a single core, but its hardware threads
act like separate processors, because the architecture being
developed, is going to be used for fast task switch and small
interrupt latencies.

In the following chapter, the way that a gcc compiler can
be used to generate code for this kind of architecture will be
presented. The programming paradigm for this architecture
requires, from the programmer, very good knowledge about
hardware, programming language and compilers.

This article describe the programming paradigms of
processor architecture detailed in [3] and highlights the
consequences that appear when a processor is using hardware
tasks and a compiler that is not build for this kind of
architecture.

This paper is organized as follows. The programming of
nMPRA and NHSE architecture is presented in Chapter II
which consists of initialization of the SCPUi followed by
examples how to use the hardware task and programming
paradigms. The final conclusions are drawn in Chapter III.

2015 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, Cheile Gradistei, Romania

978-1-4799-8481-7/15/$31.00 ©2015 IEEE 705

II. PROGRAMMING PARADIGM OF NMPRA AND NHSE

ARCHITECTURE

In article [3] is presented a processor architecture that offer
hardware support for real time operating system (nHSE) and
hardware synchronization between tasks (nMPRA):

 nMPRA (multiple pipeline registers architecture for n
tasks): offer support for hardware synchronization
between tasks and peripherals.

 nHSE (hardware scheduler engine for n tasks): offer
support for static and dynamic hardware scheduler for
n tasks.

Writing code in assembler or in a high level programming
language the compiler will generate machine code that will be
executed sequentially. The used resources are only the 32
registers that are used for local variables, function call and
normal computation.

The new architecture offers some important advantages:

 Fast response time for a task switch. The stack and
registers are not used for the context switch.

 No task can alter the state of another task.

 The event’s that may appear will be served faster.

The first two advantages changed the programming
paradigm of a single core microcontroller because the
hardware tasks (Semi processor i - SCPUi) are acting like
independent control process unit (CPU) despite the fact that
it’s not the case.

The MIPS32 Release1 architecture was used and tested
using the gcc toolchain built from the following tools and the
C programming language:

 binutils-2.24.

 gcc-4.9.1.

 gmp-6.0.0a.

 mpc-1.0.2.

 mpfr-3.1.2.

 newlib-2.1.0.

The new paradigm will be detailed in the following lines.

A. SCPUi initialization

Each SCPUi must initialize its own registers and

coprocessor 2 (COP2) module correctly for a proper operation

because these hardware resources are not shared (Figure 1).

After RESET only SCPU0 is active and must be used to

initialize the others SCPUi in the following steps:

 SCPU0 will set the recurrence of each SCPUi
(function initThread, line 23 from below code
example) with the lowest recurrence starting with the
least SCPUi priority because the SCPU0 (line 26 from
below code example) must be the last task that is
called before initialization of the Scheduler ([3]). Only
SCPU0 has the rights for configuring the Scheduler.

 SCPU0 configure the Scheduler to use a non-
preemptive algorithm.

 SCPU0 configure the pointer of each SCPUi task (line
44, 45 from below code example) from the Scheduler
peripheral with the address of a function that will
initialize the registers and local registers of nHSE,
nHSE_lr. Each init function for SCPUi, after the
initialization has finished will inform the Scheduler
that the task has finished successfully and will enter to
an endless loop. If not, the task will run forever
because the Scheduler will consider that the task is
still running.

 The first task that will start to execute code will be the
task with less priority, in our case task1, followed by
the task with higher priority

Code example for SCPUi initialization of two tasks:

1. #define SCHEDULER_ADDR 0xE0000000

2. #define REGISTER_ASSIGMENT(val) {\

3. __reg = (unsigned long)(val);

4. asm("addiu $8,$8, 0\n\t");\

5. }

6. //force variable _reg to be placed in register $8

7. volatile register unsigned long __reg asm ("$8");

8.

9. inline void taskFinishExecution(void){

10. REGISTER_ASSIGMENT(0); asm ("mtc2 $8, $31");

11. }

12.

13. void initThread(void);

14. void Task0Init();

15. void Task1Init();

16.

17. void main(void){

18. initThread();

19.

20. while(1);

21. }

22.

StartStart

Set SCPUi with the lowest

recurrence starting with the least

SCPUi priority

Nonpreemptive scheduling

Set the address for the boot
function for all SCPUi

Wait for the Scheduler to start
working

WaitWait

Figure 1 - Boot process for SCPUi

706

23. void initThread(void){

24. //SCPU1, SCPU0 recurrence

25. *((volatile uint32_t*)SCHEDULER_ADDR+3) = 300;//300 machine cycles for

SCPU1

26. *((volatile uint32_t*)SCHEDULER_ADDR+2) = 10; //10 machine cycles for SCPU0

in order to start immediately

27.

28. /*Scheduler preemptive, no prescaler for SCPUi recurrence

29. Bits: 0-3: SCH_TMR1 prescaller (SCPU0 clock prescaller)

30. 4-7: SCH_TMR2 prescaller (SCPU1 clock prescaller)

31. 8-11: SCH_TMR3 prescaller (SCPU2 clock prescaller)

32. 12-15: SCH_TMR4 prescaller (SCPU3 clock prescaller)

33. 16-19: SCH_TMR5 prescaller (SCPU4 clock prescaller)

34. 20-23: RoundRobin timeStamp prescaller

35. 27: enable: preemtiv, disable: nepriemtiv

36. 28: enable SCPU1

37. 29: enable SCPU2

38. 30: enable SCPU3

39. 31: enable SCPU4

40. */

41. *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF8111111;

42.

43. /*initialize the address of each task*/

44. *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = &Task0Init;

45. *((volatile uint32_t*)SCHEDULER_ADDR+0x11) = &Task1Init;

46.

47. /*Scheduler nonpreemptive, no prescaler for SCPUi recurrence*/

48. *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF0111111;

49. /*the Scheduler will start running*/

50. /*enable the Scheduler*/

51. *((volatile uint32_t*)SCHEDULER_ADDR+0x0D) = 1;

52.

53. taskFinishExecution();

54. }

55. void Task0Init() {

56. asm("jal initTask0_NHSE_CP2 \n\t"//jump to function

57. "nop\n\t"

58. "jal SCHEDULER_Init\n\t"//jump to function

59. "nop\n\t");

60. taskFinishExecution();

61. }

62. void Task1Init(){

63. asm("jal initTask1_NHSE_CP2 \n\t" //jump to function

64. "nop\n\t");

65. /*reset the recurrence of the task*/

66. *((volatile uint32_t*)SCHEDULER_ADDR+3) = 0xFFFF;

67. taskFinishExecution();

68. }

Where:

 SCHEDULER_ADDR (line 1 from above code
example) is the base address of the Scheduler
peripheral that is located on the slow bus.

 initTask0_NHSE_CP2 (line 56 from above code
example) and initTask1_NHSE_CP2 (line 63 from
above code example) are the functions that are called
to initialize the COP2 for task 0 and task 1. Each task
will have a different function for initialization because
the nHSE_lr can behave differently for each task.

 SCHEDULER_Init (line 58 from above code
example) is the function that is called to initialize the

scheduler with the correct recurrence of all available
tasks.

 SCH_Task0Finished() (line 60 from above code
example) and SCH_Task1Finished() (line 67 from
above code example) function will inform the
Scheduler that the tasks has finished successfully and
will enter deep sleep produce by COP2.

B. Using the hardware tasks

In order to use the power of the hardware tasks, the task

recurrence (the recurrence, which each task will be called) and

start address of each task function (Figure 2), must be

configure correctly.

Code example for initialization of two tasks:

1. static void Task0Function(void){}

2. static void Task1Function(void){}

3.

4. void main(void)

5. {

6. //SCPU0, SCPU1 recurrence

7. *((volatile uint32_t*)SCHEDULER_ADDR+2) = 1000;//1000 machine cycles for

SCPU0

8. *((volatile uint32_t*)SCHEDULER_ADDR+3) = 2000;//2000 machine cycles for

SCPU1

9.

10. /*Round robin timer that is used to supervise the active time of the

11. current task.*/

12. *((volatile uint32_t*)SCHEDULER_ADDR+1) = 1000;//RBTM timer(machine cycles)

13.

14. /*Scheduler preemptive, no prescaler for SCPUi recurrence

15. Bits: 0-3: SCH_TMR1 prescaller (SCPU0 clock prescaller)

16. 4-7: SCH_TMR2 prescaller (SCPU1 clock prescaller)

17. 8-11: SCH_TMR3 prescaller (SCPU2 clock prescaller)

18. 12-15: SCH_TMR4 prescaller (SCPU3 clock prescaller)

19. 16-19: SCH_TMR5 prescaller (SCPU4 clock prescaller)

20. 20-23: RoundRobin timeStamp prescaller

21. 27: enable: preemtiv, disable: nepriemtiv

22. 28: enable SCPU1

23. 29: enable SCPU2

24. 30: enable SCPU3

25. 31: enable SCPU4

26. */

27. *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = 0xF8111111;

StartStart

Set SCUi with the correct

recurrence for all used threads

Nonpreemptive/Preemptive

scheduling

Set the address for the boot
function for all SCUi

Wait for the Scheduler to start
working

WaitWait

Figure 2 – Steps for Scheduler configuration

707

28.

29. /*initialize the start address of each task*/

30. *((volatile uint32_t*)SCHEDULER_ADDR+0x10) = &Task0Function;

31. *((volatile uint32_t*)SCHEDULER_ADDR+0x11) = &Task1Function;

32. /*the Scheduler will start running*/

33. *((volatile uint32_t*)SCHEDULER_ADDR+0x0D) = 1;

34.

35. while(1);

36. }

 In the example above the Scheduler ([3]) module can be
access as any other peripheral from the slow bus and the code
for void main function is executed by the SCPU0 for the first
time. After the initialization of all hardware task is finished the
Scheduler will enable the task with the smaller recurrence
from the system to start executing code.

C. Using shared variables between tasks

Using global variables that are shared between SCPUi, the

compiler might consider that the code generation can be

optimize (internal implementation of the compiler) to use local

variables that can be stored in registers. This case may appear

when a variable is initializing globally and read in each task.

Only the task used for initialization of this variable will see the

value because is the first task to execute code. In this case the

hardware task may not working properly because it’s

expecting a value that is not present. For eg: A global variable

that is used to enable the reading of an analog pin. The first

task that execute the initialization routine will use the correct

value from the variable while the other tasks will not read the

analog pin because the value that enable the readings is not

present.

The same result will be if a variable is modified in a task

and read in other task, because the variable will be optimize

by the compiler and used locally.
To avoid this kind of behavior the variable must be forced

to be placed in RAM (MIPS32 architecture cannot perform
operation in directly in RAM, therefore the values from RAM
must be loaded into the local registers) by the compiler or to
use the mechanisms provided by the nHSE architecture, the
hardware mutexes that are atomic operations.

D. Interfacing with COPROCESSOR 2 (nHSE_lr)

The local registers, of nHSE architecture, which are

implemented as COP2, are appointed as nHSE_lr and the

global registers of nHSE are appointed as nHSE_gr.

A coprocessor can be used to supplement the function of

the CPU. The MIPS architecture support 4 coprocessors:

 Coprocessor 0 (COP0): supports exceptions and
virtual memory system.

 Coprocessor 1 (COP1): reserved for floating point
custom implementation.

 Coprocessor 2 (COP2): available for user defined
implementation.

 Coprocessor 3 (COP3): reserved for floating point
module in Release 1 implementation of the MIPS64

architecture and on all release 2 implementations of
the architecture.

The MIPS32 architecture has provided a means by which

can be upgraded to do custom computation. In this case we

discuss about the COP2 that has some standard assembler

instruction that can be used to interface with:

 mtc2 – move word to coprocessor 2

 mfc2 – move word from coprocessor 2

These two assembler instructions are enough for a proper
use of the new module. The gcc compiler is not offering
support for the C programming language to work with the
COP2 assembler instructions. Therefore we had to mix C with
assembler instructions.

1) Writing to nHSE_lr registers

When, only one variable is used, inside a function, the

register $8 (t0) is used to store the value (Table 1).

Table 1 – Assembler code generated from C
C language Generated assembler

1. uint32_t localVariable = 0; 1. move t0,a0

2. addiu t0,t0,0

Further we will present a function that can be used to write

into the registers from COP2 (Table 2):

Table 2 – Function used to write to nHSE_lr registers
C language Generated assembler

1. //force variable _reg to be placed in

2. //register $8

3. volatile register

4. unsigned long __reg asm ("$8");

5.

6. inline void crTR_SET(unsigned long val){

7. //val will be assigned to reg $8

8. __reg = (unsigned long)(val);

9. asm("addiu $8,$8, 0\n\t");

10. //load reg $8 value to reg $0(crTR)

11. asm("mtc2 $8, $0");

12. }

1. 00000e14 <crTR_SET>:

2. e14: 00804021 move t0,a0

3. e18: 25080000 addiu t0,t0,0

4. e1c: 03e00008 jr ra

5. e20: 48880000 mtc2 t0,$0

2) Reading from nHSE_lr registers

The same principle applied to writing to nHSE_lr registers

will also be applied in this context as can be seen in Table 3:

Table 3 - Function used to read from nHSE_lr registers
C language Generated assembler

1. //force variable _reg to be placed in

2. //register $8

3. volatile register

4. unsigned long __reg asm ("$8");

5.

6. inline unsigned long crTR_GET(void){

7. //load reg $0(crTR) value into _reg

8. //variable

9. asm("mfc2 $8, $0");

10. return __reg;

11. }

1. 00000e24 <crTR_GET>:

2. e24: 48080000 mfc2 t0,$0

3. e28: 03e00008 jr ra

1. e2c: 01001021 move v0,t0

708

E. Interfacing nHSE_lr with Scheduler

The interaction between the nHSE_lr and the Scheduler is

absolutely necessary because the COP2 instructions get to be

very powerful. The mtc2 instruction can be used to create

more software custom instructions that can be used to:

 Create an atomic instruction that can be executed in 2
machine cycles. nHSE_lr is used to write directly, at a
specified address the data, into nHSE_gr peripheral.

 Create an atomic instruction that can force a SCPUi
thread to enter into a true sleep mode. nHSE_lr will
inform the Scheduler that the task entered into sleep
mode in order not to promote the current task to long
task queue (LTQ [3]) .

The custom instructions are created in software by writing
the instructions mnemonic into a 32 bit register which is then
used to be send to the nHSE_lr. The register used is $31.

1) Instruction used to signal the finish of a task

Table 4 - Instruction used to signal the finish of a task
Instruction 0 3 4 31

taskFinishExecution Opcode

0

n/a

The instruction will alert the Scheduler, by hardware that

the task has finished successfully and can be restarted again

(Table 4).

2) Instruction used to force a SCPUi to enter sleep mode

Table 5 - Instruction used to enter sleep mode
Instruction 0 3 4 31

taskSleep Opcode

1

n/a

To decode the instruction nHSE_lr need only the opcode

because the behavior is predefined in the module. The

instruction will stall all the pipeline registers, in this way the

SCPUi state will be freeze (Table 5).

3) Instruction used to Lock/Release a mutex

Table 6 - Instruction used to Lock/Release a mutex
Instruction 0 3 4 11 12 19

mutexLock Opcode

2

Task Id Mutex Id

A mutex can be released only by the task that locked it. If

another task try to lock a mutex that is already locked nothing

will happened. The same instruction is used to release the

mutex when is called the second time.

Mutex Id (Table 6) will be used to compute the address

and the Task Id for data that are going to be written into

grMutex registers from nHSE_gr.

4) Instruction used to stop a SCPUi from execution

Table 7 - Instruction used to stop a SCPUi from execution
Instruction 0 3 4 27 28 31

CRMSTOP Opcode
3

CR0MSTOP CR0_STOP_ADDR

Each bit from the register CR0MSTOP will cause the

SCPUi to be stopped from the execution immediately (Table
7).

5) Instruction used to reset a SCPUi

Table 8 - Instruction used to reset a SCPUi from execution
Instruction 0 3 4 27 28 31

CRMRESET Opcode

3

CR0RESET CR0_RESET_ADDR

III. CONCLUSIONS

In this paper we created the development environment for

the nHSE architecture that is functional and can be used to

create applications. The drawback of this architecture is a

more restrictive environment that the one with a single core,

because the gcc compiler will generate code only for single

core microcontrollers. The programming parading is not that

easy to understand because of the knowledge in embedded and

hardware that is needed to handle this environment.

Despite the fact that we need big amount of programming

experience in embedded, the architecture along with the C

programming language can create really fast applications that

can handle a much more amount of external interrupts and

internal events than an ordinary microcontroller.

Also with this architecture we can create more secure and

hard to crack applications, when it comes to third party,

because no SCPUi can alter the internal state of another

SCPUi.

IV. FUTURE WORK

A point that must be taken in consideration for future

development is to create an easier framework for the

programmer or create a custom compiler for this processor

architecture, in order to make this approach more popular.

V. ACKNOWLEDGMENT

This paper was supported by the project "Sustainable
performance in doctoral and post-doctoral research
PERFORM - Contract no. POSDRU/159/1.5/S/138963",
project co-funded from European Social Fund through
Sectorial Operational Program Human Resources 2007-2013.

This work was partially supported from the project Integrated

Center for research, development and innovation in Advanced

Materials, Nanotechnologies, and Distributed Systems for

fabrication and control, Contract No. 671/09.04.2015, Sectoral

Operational Program for Increase of the Economic

Competitiveness co-funded from the European Regional

Development Fund.

709

References
[1] Zhikao Ren, Coll. of Inf., Qingdao Univ. of Sci. & Technol., Qingdao,

China, Chen Ye, Guozu Liu, “Application and Research of C Language
Programming Examination System Based on B/S”, ISBN 978-1-4244-
8627-4.

[2] Wu, Z., Comput. Lab., Cambridge Univ., UK, "Making C++ a
distributed programming language", ISBN 0-8186-4430-3
http://en.wikipedia.org/wiki/GNU_toolchain

[3] Gaitan, V.G.; Gaitan, N.C.; Ungurean, I., "CPU Architecture Based on a
Hardware Scheduler and Independent Pipeline Registers," Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on , vol.PP, no.99,
pp.1,1, ISSN : 1063-8210, doi: 10.1109/TVLSI.2014.2346542.

[4] Andries, L.; Gaitan, G., "Dual priority scheduling algorithm used in the
nMPRA microcontrollers," System Theory, Control and Computing
(ICSTCC), 2014 18th International Conference , vol., no., pp.43,47, 17-
19 Oct. 2014, doi: 10.1109/ICSTCC.2014.6982388

[5] Gaitan, N.C.; Gaitan, V.G.; Moisuc, E.-E.C., "Improving interrupt
handling in the nMPRA," Development and Application Systems (DAS),
2014 International Conference on , vol., no., pp.11,15, 15-17 May 2014
doi: 10.1109/DAAS.2014.6842419.

[6] Gaitan, N.C.; Andries, L., "Using Dual Priority scheduling to improve
the resource utilization in the nMPRA microcontrollers," Development
and Application Systems (DAS), 2014 International Conference on , vol.,
no., pp.73,78, 15-17 May 2014, doi: 10.1109/DAAS.2014.6842431.

[7] Moisuc, E.-E.C.; Larionescu, A.-B.; Gaitan, V.G., "Hardware event
treating in nMPRA," Development and Application Systems (DAS), 2014
International Conference on , vol., no., pp.66,69, 15-17 May 2014
doi: 10.1109/DAAS.2014.6842429.

[8] Moisuc, E.-E.C.; Larionescu, A.-B.; Ungurean, I., "Hardware event
handling in the hardware real-time operating systems," System Theory,
Control and Computing (ICSTCC), 2014 18th International Conference,
vol., no., pp.54,58, 17-19 Oct. 2014,
doi:10.1109/ICSTCC.2014.6982390

710

Submission number 138

Authors or proposers Andries*, Lucian (Stefan Cel Mare University of Suceava) (59273)
Gaitan, Vasile Gheorghita (Stefan cel Mare University of Suceava) (58655)
Moisuc (Ciobanu), Elena-Eugenia (Stefan cel Mare University of Suceava) (58709)

Title Programming Paradigm of a Microcontroller with Hardware Scheduler Engine and Independent
Pipeline Registers – a Software Approach

URL for
supplementary

information

Type of submission Contributed paper

Received on June 4, 2015

Code

Keywords Embedded Systems

Abstract at
initial submission

In computer science, for embedded exists only two types of

microcontrollers that can be used to develop a working

system. You can use a single core or a multicore which is

much faster but will not be the equivalent of a single core

multiple with the numbers of cores, because a small part

from the power will be used for inter process

communications. Our approach is a little bit different

because we use a single core CPU that have a number of

finite task that act like different CPU’s. In this new

architecture there is no need for inter process

communication because the processor is a single core and

the hardware tasks use the same resources as the others.

The peripherals of this architecture will improve interrupt

latencies and task switching times, what makes this

microcontroller the best choice when it comes in interrupt

response time.

Attachments Copyright Transfer Form (attachment to final submission). Status: Received

Profile Contributed Papers

Status Final version received

Date of latest decision
or action

August 5, 2015

Abstract In computer science, for embedded field only two types of
microcontrollers exists, that can be used to develop a

working system. You can use a single core or a multicore

which is much faster but will not be the equivalent of a

single core multiple with the numbers of cores, because a

small part from the power will be used for inter process

communications. Our approach is a little bit different

because we use a single core CPU that have a number of

finite task that act like different CPU’s. In this new

architecture there is no need for inter process

communication because the processor is a single core and

the hardware tasks use the same resources as others. The

peripherals of this architecture will improve interrupt

latencies and task switching times, what makes this

microcontroller the best choice when it comes in interrupt

response time.

Number of pages in
final manuscript

6

Copyright transferred

Session Embedded Systems (Regular Session)

Schedule code ThA5.6

Scheduled time of
presentation

Thursday October 15, 2015 10:50−12:50 Room 5 12:30−12:50

 The session, schedule code and scheduled time of presentation, if present, are tentative.
Please refer to the final program

10/20/2015 ICSTCC15_StartPage.html

file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_StartPage.html 1/5

2015 19th International Conference on System Theory, Control and Computing (ICSTCC)
October 14 16, 2015, Cheile Gradistei Fundata Resort, ROMANIA

Start Page Program at a Glace Author Index Keyword Index Content List

Book of Abstracts: Wednesday Thursday Friday

Proceedings of
2015 19th International Conference on System Theory,

Control and Computing (ICSTCC)

Joint conference SINTES 19, SACCS 15, SIMSIS 19

October 14 16, 2015

CheileGradistei Fundata Resort, ROMANIA

Editors:
Sergiu Caraman
Marian Barbu
Răzvan Şolea

IEEE Catalog Number: CFP1536PUSB

ISBN: 9781479984800

Copyright and Reprint Permission: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law
for private use of patrons those articles in this volume that carry a code at the
bottom of the first page, provided the percopy fee indicated in the code is paid

http://www.aie.ugal.ro/icstcc2015
http://www.cheilegradistei.ro/resort-fundata/index.php?page=home&lang=en
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_StartPage.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_ProgramAtAGlance.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_AuthorIndex.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_KeywordIndex.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_ContentList.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_BookOfAbstractsW.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_BookOfAbstractsT.html
file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_BookOfAbstractsF.html
http://www.cheilegradistei.ro/resort-fundata/index.php?page=home&lang=en

10/20/2015 ICSTCC 2015 Book of Abstracts

file:///D:/doctorat/ICSTCC2014/Archive/ICSTCC15_BookOfAbstractsT.html 8/8

pp. 693698
Postolache, Mihai Gheorghe Asachi Tech. Univ. of Iasi

CAN (Controller Area Network) and TIA485 are two of the most used standards in fieldbus systems. While
CAN ISO IS11898 includes complete data link layer specifications on top of its physical layer, TIA485 only
addresses the physical layer of the 7layer OSI model. Other communication parameters like speed, format,
and data transmission protocol are not specified by RS485 in order to provide interoperability of similar
devices from different manufacturers. After a brief introduction and comparison of the two communication
protocols, the paper investigates to what extent the CANopen specification an application level protocol
developed primarily for CAN networks should be used in TIA485based fieldbus networks in order to provide
the user an application programming interface (API) independent of the physical layer. Selected and
customized CANopen services have been implemented and tested on a network of microcontrollerbased
stations equipped with CAN ISO 11898 and TIA485 communication interfaces.
12:1012:30 ThA5.5
Future House Automation, pp. 699704
Florea, Adrian Lucian Blaga Univ. of Sibiu
Bancioiu, Iosif Lucian Blaga Univ. of Sibiu

In this paper, we propose the future house automation, a PLCbased embedded system that aims reducing the
house energy consumption by optimizing the entire hardware assembly and software algorithms. The project
started from the idea of designing a selfcontrolled house, to increase user's comfort in his daily environment,
reducing the cost and optimizing the energy consumption. Our embedded application represents a green
solution into a growing number of environmentally aware consumers, very suitable for the market of energy
efficient control systems. We provide a cheap solution for developing by everyone its own automation system
control house. Therefore, our project contributes for helping the elderly, which represents another social
challenge with global character.
12:3012:50 ThA5.6
Programming Paradigm of a Microcontroller with Hardware Scheduler Engine and Independent
Pipeline Registers – a Software Approach, pp. 705710
Andries, Lucian Stefan Cel Mare Univ. of Suceava
Gaitan, Vasile Gheorghita Stefan Cel Mare Univ. of Suceava
Moisuc (Ciobanu), ElenaEugenia Stefan Cel Mare Univ. of Suceava

In computer science, for embedded field only two types of microcontrollers exists, that can be used to develop
a working system. You can use a single core or a multicore which is much faster but will not be the equivalent
of a single core multiple with the numbers of cores, because a small part from the power will be used for inter
process communications. Our approach is a little bit different because we use a single core CPU that have a
number of finite task that act like different CPU's. In this new architecture there is no need for inter process
communication because the processor is a single core and the hardware tasks use the same resources as
others. The peripherals of this architecture will improve interrupt latencies and task switching times, what
makes this microcontroller the best choice when it comes in interrupt response time.

file:///D:/doctorat/ICSTCC2014/Archive/papers/ThA5-05.pdf
file:///D:/doctorat/ICSTCC2014/Archive/papers/ThA5-06.pdf

