
ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 66

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

MATHEMATICS, PHYSICS, THEORETICAL MECHANICS

FASCICLE II, YEAR VII (XXXVIII) 2015, No. 1

STUDY ON A MICROCONTROLLER ARCHITECTURE IN

A HARDWARE REAL-TIME OPERATING SYSTEM

Elena-Eugenia (Ciobanu) Moisuc
1,*

, Nicoleta-Cristina Gaitan
1

Faculty of Electrical Engineering and Computer Science, “Stefan cel Mare” University of Suceava, Romania,

*Corresponding author: neli.ciobanu@eed.usv.ro

Abstract

A real-time operating system (RTOS) is characterized by high computing power, specialized

scheduling algorithm and high frequency clock outage impacting computing power. RTOSs are

mainly used for their high response capability compared to the total volume of work they can

perform. If certain events such as interrupts, deadlines, timers, mutexes, or watchdog timers occur

simultaneously, a strict management to prioritize them is needed. This paper proposes a hardware

method of event management; the software scheme is not acceptable because it causes fatal delays

in real-time systems. A microcontroller architecture named n-tasks MPRA (Multi Pipeline Register

Architecture) is used, which allows switching between tasks of one processor cycle and a response

time to events up to 1.5 processor cycles. In this architecture, each task has its own set of pipeline

registers.

Keywords: hardware scheduler, interrupt, microprocessor, pipeline register, real-time system

1. INTRODUCTION

A real-time system is a system where the response time during the return of a result is

important and is designed for real-time applications [1], [2]. A Real-Time System (RTS) must ensure

deadlines for the worst case operating. Planning tasks relate to solutions to provide a reliable

processor for each task [2]. Overlapping operations occurring in task context switching and at the

implementation rate of the task can cause jitter and lack deadlines in the RTS with software

schedulers.

Gaitan et al. proposed a hardware scheduler architecture HSE (Hardware Scheduler Engine)

[3], static and dynamic, incorporated into the processor with Multi Pipeline Register Architecture

(MPRA). The Program Counter (PC), pipeline and general registers are multiplied resources and the

memory is directly proportional to the number of tasks in the system [4]. Hardware Scheduler Engine

(HSE) activates or deactivates the interrupts. Because interrupts follow the same regime as the

executive tasks, the enabling or disabling executions are done using the same instructions addressed

to the tasks. HSE uses a unified space for interrupts and priority tasks and planning rule; the high

priority tasks cannot be interrupted by interrupts assigned lower priority tasks. This rule supports the

need to ensure implementation deadlines for task completion that should provide real-time response to

external stimuli.

This study continues the basic ideas of [4] and [5] for nHSE and nMPRA (hardware

architecture is shown in Fig. 1). The solution presented in this paper has a high degree of flexibility

and provides the same response time for all interrupts and events, being applicable for small

microcontrollers.

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 67

This paper presents some summary results of the doctoral research published in international

conferences proceedings attended.

The paper is organized as follows: section 2 presents the nMPRA, part 3 presents some data

about nHSE, section 4 includes the treatment of hardware events with a hardware prioritization

system, in section 5 the PC architecture is presented, and part 6 shows the conclusions.

2. nMPRA

Fig. 1. The nMPRA (source: [7])

The sCPUi treats a single task. Each instance of task i has a set of pipeline registers, a register

file, a PC register and some control registers. All sCPUi are identical except sCPU0 that configures

and monitors the nMPRA registers [7]. The hardware scheduler continually monitors all events

addressed to sCPUi, which are timer events (TEvi), watchdog timer events (WDEvi), deadline events

(D1Evi and D2Evi), interrupts attached to the task i (IntEvi), mutexes (MutexEvi), synchronization and

communication between task events (SynEvi) and self-supporting execution signal for current sCPUi

(lr_runs_CPUi).

3. nHSE

In software schedulers, the execution of the scheduler and the time to switch contexts override

due dates and decrease the load planning scheme which would have been useful during the execution

of tasks assigned. Hardware schedulers aim to relieve the activity of the processor by planning tasks

for it.

Fig. 2. The nHSE Architecture (source: [5])

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 68

MPRA uses an internal scheduler that does not induce inter-processor synchronizations due

override nor require additional time for arbitration bus interconnect. nHSE (Fig. 2) is a static and

dynamic original hardware scheduler which provides unified management for various types of events

and a method of attachment of the interrupts to the tasks, allowing control over their behaviour.

4. EVENT HANDLING

The problem to be addressed is the priority of each simultaneously activated event attached to

the sCPUi. An Event Priority Register (EPRi) contains the priority level of these 8 types of events.

sCPU0 is activated by the nMPRA and it sets the priority for the event associated with each sCPUi

according to user requirements.

Fig. 4. Global event prioritization scheme (source: [7])

There are 8 types of events, 8 decoders and selection schemes (Fig. 4). The EPRi register

(Event Priority Register) stores [7]: Pri_TEvi, Pri_WDEvi, Pri_D1Evi, Pri_D2Evi, Pri_IntEvi,

Pri_MutexEvi, Pri_SynEvi, and Pri_RunEvi. The 8 multiplexers MUX collect the outputs of flip-flops

D (fig. 4).

Fig. 5. Address signal selection scheme (source: [7])

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 69

The multiplexers assure the selection of the type of event to be treated (Fig. 5). All events that

are unique in their category and which are software globally treated have an associated trap-register

shown in Fig. 5. The routine addresses are loaded into an event vector-register (Fig. 6) at boot time by

sCPU0 after reset.

Fig. 6. Event vector registers (source: [7])

Interrupt handling contains a hardware solution for assigning the events to the tasks [5]. Thus,

each interrupt inherits the priority of the associated task.

The major disadvantage of the software solution [5] are the jitters generated by the test blocks

and the service routines for interrupts when multiple interrupts are attached to the same sCPUi and

occur simultaneously.

In Fig. 7 a hardware solution for interrupt handling is described [5]. There is an encoder of

priorities for the interrupts. Multiplying by 4, the movement in a trap-cells table for interrupts is

calculated. The interrupt service routine obtains the control.

Fig. 7. Hardware interrupt handling (source: [5])

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 70

5. PROGRAM COUNTER ARCHITECTURE

In the presented hardware solutions, each sCPUi has a Program Counter (PCi) register. The

task attached to the occurred event becomes ready for execution, and then the trap-register sets the

PCi (Fig. 8). The PCi was changed to implement automatic redirection to the event handling routines

[7].

Fig. 8. Program Counter architecture (source: [7])

The BackUp_PC is a register that saves the current PCi address at the reporting of an event by

the sCPU_Evi signal. Then, the highest priority address of the active event to be treated automatically

uploads in PCi. The instruction retesr (return from the event service routine) runs, then the ret_esr

signal is activated, PCi uploads the return address from the BackUp_PC register, and the normal

execution of the program is continued. The NextEvi signal is disabled, indicating that an event is

handled and no other event can be processed until the NextEvi signal returns from the current event

handler [7].

6. CONCLUSIONS

This article presents some team research regarding the management of events [6] and

interrupts [5] by implementing effective hardware solutions. The architecture includes scheduler

functionality into one functional block of CPU and offers the possibility of switching contexts and

tasks in just half clock cycle, eliminating specific disadvantages of software schedulers.

The global prioritization scheme [6] completes the implementation of the scheme for the

hardware handling events on nMPRA. This scheme can be hardware treating the events. The

advantage is the reduced source detection time and start time for corresponding event service routines.

The paper shows the trap-registers of the event categories and the structure of the Program Counter

Register [7].

The survey remains open, especially for improvement to be presented in future articles.

Acknowledgment

This paper was supported by the project Sustainable performance in doctoral and post-doctoral

research – PERFORM, Contract no. POSDRU/159/1.5/S/138963”, project co-funded from the

European Social Fund through the Sectorial Operational Program Human Resources Development

2007-2013.

References

1. Gaitan N.C., Real-time Acquisition of the Distributed Data by using an Intelligent System,

Electronics and Electrical Engineering, Kaunas: Technologija, No. 8, Issue 104, October

2010, ISSN 1392-1215.

2. Gaitan V.G., Gaitan N.C., Ungurean I., CPU Architecture based on a Hardware Scheduler and

Independent Pipeline Registers, IEEE Transactions on VLSI System, 2014.

3. Dodiu E., Gaitan V.G., Graur A., Custom designed CPU architecture based on a hardware

scheduler and independent pipeline registers – architecture description, IEEE 35
th
 Jubilee

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II

███

.

 71

International Convention on Information and Communication Technology, Electronics and

Microelectronics, Croatia, May 2012.

4. Dodiu E. and Gaitan V.G., Custom designed CPU architecture based on a hardware scheduler

and independent pipeline registers – concept and theory of operation,2012 IEEE EIT

International Conference on Electro-Information Technology, Indianapolis, USA, 6-8 May

2012, ISBN: 978-1-4673-0818-2, ISSN: 2154-0373.

5. Gaitan N.C., Gaitan V.G., (Ciobanu) Moisuc E.E., Improving Interrupt Handling in the

nMPRA, 12
th
 International Conference on Development and Application Systems, Suceava,

Romania, May 15-17, 2014, ISBN: 978-1-4799-5094-2/14.

6. (Ciobanu) Moisuc E.E., Larionescu Al.B., Gaitan V.G., Hardware Event Treating in nMPRA,

12
th
 International Conference on Development and Application Systems, Suceava, Romania,

May 15-17, 2014, ISBN: 978-1-4799-5094-2/14.

7. (Ciobanu) Moisuc E.E., Larionescu Al.B., Ungurean I., Hardware Event Handling in the

Hardware Real-Time, 18
th
 International Conference on System Theory, Control and

Computing, Sinaia, Romania, October 17-19, 2014, ISBN: 978-1-4799-4602-0 ©2014 IEEE.

