
12
th

 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 15-17, 2014

978-1-4799-5094-2/14/$31.00 ©2014 IEEE

Improving Interrupt Handling in the nMPRA

Nicoleta Cristina GAITAN, Vasile Gheorghita GAITAN, Elena-Eugenia (CIOBANU) MOISUC

Faculty of Electrical Engineering and Computer Science

Stefan cel Mare University of Suceava

Suceava, Romania

cristinag@eed.usv.ro, gaitan@eed.usv.ro, neli.ciobanu@eed.usv.ro

Abstract—In the most Real Time Operating Systems (RTOS),

the interrupt handlers are implemented in software and they can

increase the response time to external events and the overload of

the CPU. Therefore, the newest RTOSs implement in hardware

the interrupt handlers in order to eliminate these two problems.

By analyzing traditional models for the management of

interrupts, we can emphasize their inability to provide the

temporal determinism required in real-time systems. This paper

presents an interrupt handler implemented in hardware based on

a method that uses a unified space of priorities for the tasks and

interrupts, so there is not a specialized interrupt controller. This

solution is integrated in the MPRA (Multi Pipeline Register

Architecture) processor that contains a hardware RTOS. The

major difference compared to other architectures with hardware

scheduler is that the MPRA is a multi-pipeline architecture,

which means that each task has its own set of pipeline registers.

Keywords— hardware scheduler; interrupt; microprocessor;

pipeline register; real time system

I. INTRODUCTION

One of the fundamental requirements of RTS (Real-Time
Systems) is the determinism of the critical real-time tasks. The
execution rate of the tasks, the overload generated by the
operating system, and time spend for the switching operations
of the tasks’ context are just a few parameters that can
generate jitters and deadline misses in RTS based on software
schedulers.

In this paper, we propose an interrupt system for a real-
time scheduler implemented in hardware, which eliminates the
overload generated by the operating system and context
switching operations. The novelty is the method used for the
selection of the tasks and the management of the interrupt
system that does not require a dedicated interrupt controller.

The research presented in this paper is based on the
functional Multi Pipeline Register Architecture (MPRA)
processor presented in [1] and [2], which provides a very low
time for the context switching operations as a consequence of
the architecture concepts. This processor is capable to perform
automatic context switching and to start the new task in a
range of 1 to 3 clock cycles. The processor implements a
structure with multiplexed resources for pipeline registers and
registers file and relies on an integrated hardware scheduler,
which can run its own scheduling algorithms, such as EDF
(Earliest Deadline First) or RMA (Rate Monotonic

Algorithm).

The hardware scheduler is integrated into the processor,
and the context switching operations requires the remapping
of the registers file and of the pipeline registers file, both
actions being driven by the HSE unit (Hardware Scheduler
Engine) [3].

The MPRA provides a dynamic mechanism for the
management of the interrupts. In the MPRA, the interrupts are
treated as tasks, and in order to guarantee a robust scheduling
scheme and to eliminate the priority inversions [4], a proper
assignment of priorities and an accurate assessment of the
problem are needed. In the most applications based on
microcontroller, a priority rule allows that all events to be
captured and treated. Because of this fixed rule, which does
not change during the execution of the application, there may
be some low-priority interrupts attached to the low-priority
tasks that interrupt the higher-priority tasks, causing the
increase of their jitters. In order to eliminate this issue, the
MPRA assigns priorities to interrupts from a common group
of tasks.

FPGA (Field Programmable Gate Array) devices offer
integrated elements with complexities of the application
oriented integrated circuits (ASIC - Application Specific
Integrated Circuit), with the advantage of programmability or
better said, of configurability [5]. The FPGA devices allow the
design of specialized hardware architectures with the
advantage of the flexibility programmable environment that
can be implemented [6]. Based on these devices, hardware
supports for RTOS primitives that can be easily implemented
[7] [8]. In this paper, we propose a hardware support for
predictable handling of the interrupts.

This article is structured as follows: in section II is
presented the nMPRA (multiplied by n times), in section III is
presented the nHSE architecture including an interrupt
management (subject of this article and the novelty for the
proposed architecture), and in section IV conclusions are
presented.

II. THE NMPRA

The nMPRA architecture is presented in Fig. 1. The
context switching operations can be achieved in one processor
cycle, and the response to an external event is delayed up to
1.5 processor cycles because each task has a set of pipeline

Fig. 1. The nMPRA. PC-program counter, IFID-Instruction Fetch Instruction Decode stage, IDEX-Instruction decode-execute stage, EXMEM-execute-memory

stage, MEMWB-memory-write back stage (source: [3]).

register and a set of general-purpose registers. For these
reasons, the architecture is very fast. All tasks share the other
resources. An instance of a task is called semi CPU for the
task i (sCPUi) and handles a single task.

There is not a specialized controller for the interrupts, but
the nMPRA provides a distributed structure that permits to
assign an interrupt to an RTOS task. The programmers can
change the priority of the interrupts by assigning them to
another task [3].

III. NHSE ARHITECTURE AND INTERRUPTS HANDLING

The nHSE (Fig. 2) has input for events (interrupts,
deadline, watchdog timers, timers, mutexes, message events,
self-support event execution, as well enabling signals of static
and dynamic schedulers and inhibiting the execution of load
and store instructions) used to generate the sCPUi activation
signals [3].

The nHSE architecture is illustrated in Fig. 3. In our
proposed solution, the interrupts are events that can be
assigned to the real-time kernel or tasks. The kernel must be a
real-time monitor type. Once entered into the monitor, this
cannot be interrupted (interrupts are disabled). As a result, the
monitor functions must be short, without interactions and
idles. The interrupts attached to a task can interrupt only
strictly lower priority tasks, which are into the running state.

Suppose that there are p interrupts in the system. For each
interrupt of the system, there is a global register, named
INT_IDi_register, with n useful bits that store the ID of the task
associated to the interrupt. The enabled interrupt INTi (Fig. 3)
validates the demultiplexer DEMUX which, in turn, will
activate one of the signals INT_i0 ... INT_in-1. OR gate (Fig. 3)
can collect all interrupts of the system. All interrupts may be

attached to sCPUi if all p registers INT_IDi_register (i = 0, ...,
p-1) are set with the value i. Likewise, neither a interrupt can
be attached to sCPUi if none of the p registers
INT_IDi_register (i = 0, ..., p-1) is not written with value i.

Fig. 2. The nHSE Architecture (source: [3]).

Fig. 3. Association of the interrupts to the sCPUi (task i) (source: [3]).

INT_IDi_
registern n

INT_i0

E

D
EM

U
X

INTi

INT_i1

INT_ii

INT_in-1

IntEviD Q

QCLK

S

R
CLK↓

INT_0i

INT_1i

INT_pi

INT_ii

i = 0 ...p-1

Global
register

Association interupts

Fig. 4. The sCPUi level hardware scheduler (block of nHSE) – (a) digital logic for ready state, (b) block diagram (source: [3]).

D flip-flop synchronizes the random occurrence of events
such as interrupt INTi producing event IntEvi (Fig. 4) and it is
accounted on the falling edge of the system clock.

This proposed scheme has some strong and interesting
characteristics: there are not a specialized interrupt controller;
interrupts inherit the priority of the tasks (sCPUi); a task can
have attached none, one, several, or all the p system interrupts;
all interrupts attached to the same task have the same priority;
an interrupt attached to a task can interrupt only the lowest
priority tasks; an interrupt may be assigned to a single task; an
interrupt can be seen as a task; all interrupts can be assigned to
a single task; an interrupt does not reset the pipeline of other
sCPUi; it does not require the saving and restoring operations
of the context; interrupts can be nested.

We assume that the devices that generate the interrupts
have a bit to signal the interrupt condition, a bit for the
interrupt validation, and a bit for the interrupt clearing.
Analyzing the scheme of the interrupts, we noticed the
following problem: what happens if all interrupts are attached
to the same sCPUi and occur simultaneously? In this article,
we present two solutions to this problem:

1. The software solution is shown in Fig. 5. It is simple (it
does not require additional hardware modules) and
versatile because the priorities of interrupts can be
easily changed. A disadvantage is the delays introduced
by the test blocks and interrupt handling routines in the
case when more interrupts are attached the same sCPUi
and they occur simultaneously. In addition, the delay
generated by the test blocks depends on the moment
position of the test blocks.

2. Another solution involves an additional hardware block
as shown in Fig. 6.

Fig. 5. The software solution.

events_i

priority_i
sCPUi_ready

14
run_sCPUi

n
sCPUi_ID

n
sCPUi_ID_TS

/sCPU_Evi
i-1

lr_enTi

TEvi

lr_enWDi

WDEvi

lr_enD1i

D1Evi

lr_enInti

IntEvi

lr_enMutexi

lr_enD2i

D2Evi

MutexEvi

lr_enSyni

SynEvi

lr_run_sCPUi

sCPUEvi

mr_stopCPUi

sCPU_Evi

/sCPU_Evi-1

/sCPU_Evi

/sCPU_Ev0

sCPUi_ready

ENB

n nsCPUi_ID

i = 0 ...n-1

/sCPU_Ev1

sCPUi_ID_TS

lr_TEvi

lr_sCPU_Evi

lr_WDEvi

lr_D1Evi

lr_D2Evi

lr_IntEvi

lr_MutexEvi

lr_SynEvi

sCPUi_ready

D Q

QCLK

S

R
CLK↑

(a) (b)

Fig. 6. Additional hardware block

At the occurrence of one or more interrupts, the priority
encoder block will generate the appropriate number of the
highest priority interrupt. This number is multiplied by 4 to
calculate the displacement of a grid cell-trap disruption (Fig.
7). The interrupt handler address is read and the control is
transferred to the interrupt handler. As a consequence, for each
interrupt, the delay time of decision block will be the same.

Fig. 7. The priority encoder block (cells-trap)

Fig. 8. The hardware solution.

The solution is fast (Fig. 8), but requires an additional
hardware block, whose complexity is given by the total
interrupts of the processor. An example is shown in Fig. 9 that
contains the equations (a), truth tables (b) and logical scheme
(c) for a priority encoder with pi = 4 (INT_0i is the highest
interrupt).

ii
INTINTpr 1_0_1_

iiii
INTINTINTINTpr 2_0_1_0_0_ (a)

Fig. 9. Example of a figure caption. (figure caption)

(b) (c)

The solution proposed in this paper is a somewhat based
on the “interrupts as threads” concept presented in [9]. In [10],
the authors present a software and hardware solutions to
prevent the overload caused by the interrupts. The integrated
model proposed in this paper can handle this overload through
various scheduling techniques such as the use of sporadic
servers [10]. Some RTOSs disable all external interrupts and
treat them trought a polling mechanism on the timer
interrupt[11]. In [12], the authors proposed a method in which
interrupts are treated as threads. The proposal aims to increase
the scalability of multiprocessor system architectures oriented
to network server operating systems and the interrupt threads
use specific priority levels. In [13], interrupts priorities can be
dynamic (by reattaching to other task or by changing the
priority of the task to which it is attached).

The proposed architecture uses a unified space of priorities
for tasks and interrupts, and relies on the hardware activation
mechanism of the tasks. In the architecture presented, as a
continuation of research from [1] and [2], the interrupt
handlers are treated as tasks. Usually, there are situations of
priority inversion when high-priority tasks are suspended by
the interrupts assigned to low priority tasks. The unification of
the tasks and priorities in the same address space has the role
to eliminate this disadvantage. The nHSE uses a unified space
of priorities for interrupts and tasks, and a scheduling rule in
which a high-priority task cannot be interrupted by interrupts
assigned to lower priority tasks. This rule supports the need to
ensure the meeting of the deadlines for the tasks that should
provide a real-time response to external stimulus. The nHSE
enables the activation or deactivation the interrupts. Interrupts
follow the same execution procedure as tasks so that enabling
or disabling their execution is performed using the same
instructions that are addressed to tasks. In the nMPRA, each
timer associated with a task can be configured to generate an
interrupt when the time allocated to the task is nearing
completion. A task can respond to an external event if the
event is masked by blocking wait instruction. The wait
instruction is very powerful because it allows synchronizing
the execution while multiple events. Under software control,
based on the sCPUi (task i) tasks, these events are treated and
cleared.

The most modern RTOS have implemented several
mechanisms for resource sharing, synchronization and
communication between tasks, but they provide API functions
that must be called individually. For example, you cannot
expect an interrupt together with a semaphore and a message.
The solution proposed in this paper, allows this operation
mode.

IV. CONCLUSION

In this paper, we improve the CPU architecture presented
in [3] by an innovative solution for prioritization of the
interrupts attached to the same task. Unlike loop testing
solution, the proposed solution provides a uniform response
time for any interrupt. Furthermore, the proposed solution can
provide static priorities for the interrupts. We can say that the
presented solution contains a unitary interrupts management,

and a hardware solution to attach the interrupts to the tasks of
the RTOS implemented in hardware.

 In the future, we will focus on the solution to create the
priority encoder blocks depending on the number of attached
interrupts and the possibility to upload direct to the CPU
hardware the address of the interrupt handlers.

ACKNOWLEDGMENT

This paper was supported by the project “Sustainable
performance in doctoral and post-doctoral research
PERFORM–Contract no. POSDRU/159/1.5/S/138963”, project
co-funded from European Social Fund through Sectorial
Operational Program Human Resources 2007-2013.

REFERENCES

[1] E. Dodiu, V.G. Gaitan, A. Graur, “Custom designed CPU architecture

based on a hardware scheduler and independent pipeline registers –
architecture description“, IEEE 35’th Jubilee International Convention
on Information and Communication Technology, Electronics and
Microelectronics, Croatia, May 2012.

[2] E. Dodiu and V.G. Gaitan, “Custom designed CPU architecture based on
a hardware scheduler and independent pipeline registers – concept and
theory of operation“, 2012 IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, IN, USA, 6-8 May 2012,
ISBN: 978-1-4673-0818-2, ISSN: 2154-0373.

[3] V.G. Gaitan, N.C. Gaitan, I. Ungurean, “CPU Architecture based on a
Hardware Scheduler and Independent Pipeline Registers”, submitted in
IEEE Transactions on VLSI System, 2014.

[4] L.E. Leyva-del-Foyo, and P. Mejia-Alvarez, “Custom Interrupt
Management for Real-Time and Embedded System Kernels”, in
Proceedings of the 10th IEEE ECOOP Workshop on Exception
Handling in Object Oriented Systems Development, 2005.

[5] Shi-Hai Zhu, “Hardware Implementation Based on FPGA of Interrupt
Management in a Real-time Operating System”, Information
Technology Journal, 2013.

[6] B.C . Alecsa, “FPGA implementation of a matrix structure for integer
division”, Proceedings of the 3rd International Symposium on Electrical
and Electronics Engineering, Galati, Romania, 2010.

[7] I. Liu, J. Reineke, E.A. Lee, “A PRET architecture supporting
concurrent programs with composable timing properties”, in Signals,
Systems and Computers, 2010, Conference Record of the Fortz Fourth
Asilomar Conference on (pp. 2111/2115), IEEE.

[8] M. Shahbazi, P. Poure, S. Saadate, M.R. Zolghadri, “Fault-Tolerant
Five-Leg Converter Topology with FPGA-Based Reconfigurable
Control”, IEEE Transactions on, vol. 60, no. 6, June 2013.

[9] W. Hofer, D. Lohmann, F. Schele, W. Schroder-Preikschat, “SLOTH:
Threads as Interrupts”, 30th IEEE Real-Time Systems Symposium,
ISBN: 978-0-7695-3875-4, 204-213, 2009.

[10] J. Mäki-Turja, G. Fohler , K. Sandström, “Towards Efficient Analysis of
Interrupts in Real-Time Systems”. 11th EUROMICRO Conference on
Real-Time Systems, York, England, May 1999.

[11] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. González Harbour, “A
practitioner’s handbook for real-time analysis”, Kluwer Academic
Publishers, 1993.

[12] K. Jeffay, D. L. Stone, “Accounting for Interrupt Handling Cost in
Dynamic Priority Task Systems”, Proc. of the IEEE Real-Time Systems
Symposium, pp. 212-221, December 1993.

[13] L. Cheng-Min, “Nested interrupt analysis of low cost and high
performance embedded systems using GSPN framework”, IEICE Trans.
Inform. Syst., E93-D: 2509-2519, 2010.

