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Abstract—In the most Real Time Operating Systems (RTOS), 

the interrupt handlers are implemented in software and they can 

increase the response time to external events and the overload of 

the CPU. Therefore, the newest RTOSs implement in hardware 

the interrupt handlers in order to eliminate these two problems. 

By analyzing traditional models for the management of 

interrupts, we can emphasize their inability to provide the 

temporal determinism required in real-time systems. This paper 

presents an interrupt handler implemented in hardware based on 

a method that uses a unified space of priorities for the tasks and 

interrupts, so there is not a specialized interrupt controller. This 

solution is integrated in the MPRA (Multi Pipeline Register 

Architecture) processor that contains a hardware RTOS. The 

major difference compared to other architectures with hardware 

scheduler is that the MPRA is a multi-pipeline architecture, 

which means that each task has its own set of pipeline registers.  
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pipeline register; real time system 

I.  INTRODUCTION 

One of the fundamental requirements of RTS (Real-Time 
Systems) is the determinism of the critical real-time tasks. The 
execution rate of the tasks, the overload generated by the 
operating system, and time spend for the switching operations 
of the tasks’ context are just a few parameters that can 
generate jitters and deadline misses in RTS based on software 
schedulers.  

In this paper, we propose an interrupt system for a real-
time scheduler implemented in hardware, which eliminates the 
overload generated by the operating system and context 
switching operations. The novelty is the method used for the 
selection of the tasks and the management of the interrupt 
system that does not require a dedicated interrupt controller.   

The research presented in this paper is based on the 
functional Multi Pipeline Register Architecture (MPRA) 
processor presented in [1] and [2], which provides a very low 
time for the context switching operations as a consequence of 
the architecture concepts. This processor is capable to perform 
automatic context switching and to start the new task in a 
range of 1 to 3 clock cycles. The processor implements a 
structure with multiplexed resources for pipeline registers and 
registers file and relies on an integrated hardware scheduler, 
which can run its own scheduling algorithms, such as EDF 
(Earliest Deadline First) or RMA (Rate Monotonic 

Algorithm).  

The hardware scheduler is integrated into the processor, 
and the context switching operations requires the remapping 
of the registers file and of the pipeline registers file, both 
actions being driven by the HSE unit (Hardware Scheduler 
Engine) [3]. 

The MPRA provides a dynamic mechanism for the 
management of the interrupts. In the MPRA, the interrupts are 
treated as tasks, and in order to guarantee a robust scheduling 
scheme and to eliminate the priority inversions [4], a proper 
assignment of priorities and an accurate assessment of the 
problem are needed. In the most applications based on 
microcontroller, a priority rule allows that all events to be 
captured and treated. Because of this fixed rule, which does 
not change during the execution of the application, there may 
be some low-priority interrupts attached to the low-priority 
tasks that interrupt the higher-priority tasks, causing the 
increase of their jitters. In order to eliminate this issue, the 
MPRA assigns priorities to interrupts from a common group 
of tasks. 

FPGA (Field Programmable Gate Array) devices offer 
integrated elements with complexities of the application 
oriented integrated circuits (ASIC - Application Specific 
Integrated Circuit), with the advantage of programmability or 
better said, of configurability [5]. The FPGA devices allow the 
design of specialized hardware architectures with the 
advantage of the flexibility programmable environment that 
can be implemented [6]. Based on these devices, hardware 
supports for RTOS primitives that can be easily implemented 
[7] [8]. In this paper, we propose a hardware support for 
predictable handling of the interrupts. 

This article is structured as follows: in section II is 
presented the nMPRA (multiplied by n times), in section III is 
presented the nHSE architecture including an interrupt 
management (subject of this article and the novelty for the 
proposed architecture), and in section IV conclusions are 
presented. 

II. THE NMPRA 

The nMPRA architecture is presented in Fig. 1. The 
context switching operations can be achieved in one processor 
cycle, and the response to an external event is delayed up to 
1.5 processor cycles because each task has a set of pipeline  



 

Fig. 1. The nMPRA. PC-program counter, IFID-Instruction Fetch Instruction Decode stage, IDEX-Instruction decode-execute stage, EXMEM-execute-memory 

stage, MEMWB-memory-write back stage (source: [3]).  

register and a set of general-purpose registers. For these 
reasons, the architecture is very fast. All tasks share the other 
resources. An instance of a task is called semi CPU for the 
task i (sCPUi) and handles a single task.  

There is not a specialized controller for the interrupts, but 
the nMPRA provides a distributed structure that permits to 
assign an interrupt to an RTOS task. The programmers can 
change the priority of the interrupts by assigning them to 
another task [3]. 

III. NHSE ARHITECTURE AND INTERRUPTS HANDLING  

The nHSE (Fig. 2) has input for events (interrupts, 
deadline, watchdog timers, timers, mutexes, message events, 
self-support event execution, as well enabling signals of static 
and dynamic schedulers and inhibiting the execution of load 
and store instructions) used to generate the sCPUi activation 
signals [3]. 

The nHSE architecture is illustrated in Fig. 3. In our 
proposed solution, the interrupts are events that can be 
assigned to the real-time kernel or tasks. The kernel must be a 
real-time monitor type. Once entered into the monitor, this 
cannot be interrupted (interrupts are disabled). As a result, the 
monitor functions must be short, without interactions and 
idles. The interrupts attached to a task can interrupt only 
strictly lower priority tasks, which are into the running state. 

Suppose that there are p interrupts in the system. For each 
interrupt of the system, there is a global register, named 
INT_IDi_register, with n useful bits that store the ID of the task 
associated to the interrupt. The enabled interrupt INTi (Fig. 3) 
validates the demultiplexer DEMUX which, in turn, will 
activate one of the signals INT_i0 ... INT_in-1. OR gate (Fig. 3) 
can collect all interrupts of the system. All interrupts may be 

attached to sCPUi if all p registers INT_IDi_register (i = 0, ..., 
p-1) are set with the value i. Likewise, neither a interrupt can 
be attached to sCPUi if none of the p registers 
INT_IDi_register (i = 0, ..., p-1) is not written with value i.  

 

Fig. 2. The nHSE Architecture (source: [3]). 

 

Fig. 3. Association of the interrupts to the sCPUi (task i) (source: [3]). 
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Fig. 4. The sCPUi level hardware scheduler (block of nHSE) – (a) digital logic for ready state, (b) block diagram (source: [3]). 

D flip-flop synchronizes the random occurrence of events 
such as interrupt INTi producing event IntEvi (Fig. 4) and it is 
accounted on the falling edge of the system clock.  

This proposed scheme has some strong and interesting 
characteristics: there are not a specialized interrupt controller; 
interrupts inherit the priority of the tasks (sCPUi); a task can 
have attached none, one, several, or all the p system interrupts; 
all interrupts attached to the same task have the same priority; 
an interrupt attached to a task can interrupt only the lowest 
priority tasks; an interrupt may be assigned to a single task; an 
interrupt can be seen as a task; all interrupts can be assigned to 
a single task; an interrupt does not reset the pipeline of other 
sCPUi; it does not require the saving and restoring operations 
of the context; interrupts can be nested. 

We assume that the devices that generate the interrupts 
have a bit to signal the interrupt condition, a bit for the 
interrupt validation, and a bit for the interrupt clearing. 
Analyzing the scheme of the interrupts, we noticed the 
following problem: what happens if all interrupts are attached 
to the same sCPUi and occur simultaneously? In this article, 
we present two solutions to this problem: 

1. The software solution is shown in Fig. 5. It is simple (it 
does not require additional hardware modules) and 
versatile because the priorities of interrupts can be 
easily changed.  A disadvantage is the delays introduced 
by the test blocks and interrupt handling routines in the 
case when more interrupts are attached the same sCPUi 
and they occur simultaneously. In addition, the delay 
generated by the test blocks depends on the moment 
position of the test blocks. 

2. Another solution involves an additional hardware block 
as shown in Fig. 6. 

 

Fig. 5. The software solution. 
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Fig. 6. Additional hardware block 

At the occurrence of one or more interrupts, the priority 
encoder block will generate the appropriate number of the 
highest priority interrupt. This number is multiplied by 4 to 
calculate the displacement of a grid cell-trap disruption (Fig. 
7). The interrupt handler address is read and the control is 
transferred to the interrupt handler. As a consequence, for each 
interrupt, the delay time of decision block will be the same. 

 

Fig. 7. The priority encoder block (cells-trap) 

 

Fig. 8. The hardware solution. 

The solution is fast (Fig. 8), but requires an additional 
hardware block, whose complexity is given by the total 
interrupts of the processor. An example is shown in Fig. 9 that 
contains the equations (a), truth tables (b) and logical scheme 
(c) for a priority encoder with pi = 4 (INT_0i is the highest 
interrupt). 
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Fig. 9. Example of a figure caption. (figure caption) 
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The solution proposed in this paper is a somewhat based 
on the “interrupts as threads” concept presented in [9]. In [10], 
the authors present a software and hardware solutions to 
prevent the overload caused by the interrupts. The integrated 
model proposed in this paper can handle this overload through 
various scheduling techniques such as the use of sporadic 
servers [10]. Some RTOSs disable all external interrupts and 
treat them trought a polling mechanism on the timer 
interrupt[11]. In [12], the authors proposed a method in which 
interrupts are treated as threads. The proposal aims to increase 
the scalability of multiprocessor system architectures oriented 
to network server operating systems and the interrupt threads 
use specific priority levels. In [13], interrupts priorities can be 
dynamic (by reattaching to other task or by changing the 
priority of the task to which it is attached).  

The proposed architecture uses a unified space of priorities 
for tasks and interrupts, and relies on the hardware activation 
mechanism of the tasks. In the architecture presented, as a 
continuation of research from [1] and [2], the interrupt 
handlers are treated as tasks. Usually, there are situations of 
priority inversion when high-priority tasks are suspended by 
the interrupts assigned to low priority tasks. The unification of 
the tasks and priorities in the same address space has the role 
to eliminate this disadvantage. The nHSE uses a unified space 
of priorities for interrupts and tasks, and a scheduling rule in 
which a high-priority task cannot be interrupted by interrupts 
assigned to lower priority tasks. This rule supports the need to 
ensure the meeting of the deadlines for the tasks that should 
provide a real-time response to external stimulus. The nHSE 
enables the activation or deactivation the interrupts. Interrupts 
follow the same execution procedure as tasks so that enabling 
or disabling their execution is performed using the same 
instructions that are addressed to tasks. In the nMPRA, each 
timer associated with a task can be configured to generate an 
interrupt when the time allocated to the task is nearing 
completion. A task can respond to an external event if the 
event is masked by blocking wait instruction. The wait 
instruction is very powerful because it allows synchronizing 
the execution while multiple events. Under software control, 
based on the sCPUi (task i) tasks, these events are treated and 
cleared.  

The most modern RTOS have implemented several 
mechanisms for resource sharing, synchronization and 
communication between tasks, but they provide API functions 
that must be called individually. For example, you cannot 
expect an interrupt together with a semaphore and a message. 
The solution proposed in this paper, allows this operation 
mode. 

IV. CONCLUSION 

In this paper, we improve the CPU architecture presented 
in [3] by an innovative solution for prioritization of the 
interrupts attached to the same task. Unlike loop testing 
solution, the proposed solution provides a uniform response 
time for any interrupt. Furthermore, the proposed solution can 
provide static priorities for the interrupts. We can say that the 
presented solution contains a unitary interrupts management, 

and a hardware solution to attach the interrupts to the tasks of 
the RTOS implemented in hardware. 

 In the future, we will focus on the solution to create the 
priority encoder blocks depending on the number of attached 
interrupts and the possibility to upload direct to the CPU 
hardware the address of the interrupt handlers. 
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