
Transparent Interaction of SCADA Systems

Developed over Different Technologies

Ioan UNGUREAN, Nicoleta Cristina GAITAN, Vasile Gheorghita GAITAN

Faculty of Electrical Engineering and Computer Science

Stefan cel Mare University of Suceava

Suceava, Romania

ioanu@eed.usv.ro, cristinag@eed.usv.ro, gaitan@eed.usv.ro

Abstract— Supervisory control and data acquisition (SCADA)

systems are usually distributed applications designed and

developed by using a middleware technology. In this paper, it is

proposed a solution for interoperability of SCADA systems that

are based on different middleware technologies. The proposed

solution allows the interconnection of SCADA system based on

the following middleware technologies: OPC DA, OPC .NET,

OPC UA, TAO (The ACE ORB – an open-source implementation

of CORBA standard), and OpenDDS (an open-source

implementation of the DDS protocol). The proposed solution is a

software application that allows the creation of middleware

objects in order to connect to the data servers. In the application

framework, it is allowed the interconnection of the tags exposed

by the middleware objects (tags are acquired from data servers

through a middleware) directly or by a math expression. The

proposed solution is scalable in the sense that it can be added new

software modules for other types of middleware in addition to

those listed above.

Keywords—SCADA; OPC DA, OPC .NET, OPC UA, TAO,

DDS

I. INTRODUCTION

SCADA (supervisory control and data acquisition) systems
are those hardware/software systems that allow data acquisition
from sensors or field devices used in the monitoring and
control of industrial process, and also allow the transmission of
command/instructions to the remote field devices or actuators
[1]. SCADA systems are usually distributed applications on a
local network or WAN. The main elements of the SCADA
architecture are the followings [2]:

 The human operator - that monitor the industrial
process via the SCADA system.

 HMI (Human-Machine Interface) - that presents the
information acquired from the industrial process in a
graphical manner. This is a software module that can
be executed on a computer or on a dedicated device,
eventually with touch-screen. Furthermore, the human
operator can use this module to send commands to the
remote actuators.

 MTU (Master Terminal Unit) – that is the master unit
in the master/slave architecture. This module acquires
information from the fieldbuses [3] and transmits
them to the HMI modules.

 RTU (Remote Terminal Unit) – that is the slave unit
in the master/slave architecture. This is a remote
device that acquires information from the industrial
process and transmits them to the MTU.

RTU communicates with MTU throughout the fieldbuses
[3]. MTUs can be embedded dedicated devices or PC software
applications. The MTU modules distribute the data to the HMI
modules in the Internet/extranet/intranet via the standard
middlewares. The most-used middleware technologies are
those based on OPC specifications [4] (OPC DA [5], OPC
.NET [6], OPC UA [7]), and those based on CORBA standard
[8][9], DDS (Data Distribution Service) protocol [9], or AMQP
(Advanced Message Queuing Protocol) protocol [10].

Currently, there are a large number of SCADA system
manufacturers [11] that use one or more middleware
technologies listed above. In this paper, we propose a simple
solution to exchange data between these SCADA systems
based on different middleware technologies for data
distribution in intranet/extranet/Internet.

Further, this article is structured as follows: Section II
presents the main middleware technologies used to develop
SCADA systems, in Section III it is presented the solution
proposed for interoperability of SCADA systems, and Section
IV presents future development of the proposed solution. The
conclusions are drawn in Section V.

II. MIDDLEWARE TECHNOLGIES FOR SCADA SYTEMS

In order to transmit data between MTU modules and HMI
modules through heterogeneous networks, the SCADA systems
use standards-based middleware systems. The most-used
middlewares are those based on the OPC specifications that are
developed and sustained by OPC Foundation [4]. The use of
standard interfaces of software components, supported by
several manufacturers, is the main motivation of the OPC
Foundation. Currently, the OPC Foundation provides three
middleware architectures (defined by standard specifications)
for the developing of distributed applications for monitoring
and control of industrial processes, with extension for MES and
ERP applications, namely: Classic OPC DA (based on DCOM
technology from Microsoft) [5], OPC .NET - initially called Xi
Express interface (based on Windows Communication
Foundation from Microsoft) [6], and OPC UA -Unified
Architecture (based on SOAP and Web services) [7]. Classic

Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, Romania, October 17-19, 2014

ISBN 978-1-4799-4602-0 ©2014 IEEE 482

OPC DA specifications have been generally accepted for many
years as the most popular industry standard among developers
and users of SCADA applications. The most manufacturers of
applications like HMI (Human-Machine Machine Interface),
SCADA (Supervisory Control and Data Acquisition), and DCS
(Distributed Control System) based on the PC, provides a client
and/or server with OPC interfaces for their products. In order to
benefit of the security features (authentication, authorization
and encryption) of the WCF (Windows Communication
Foundation) technology, there are defined OPC .NET
specifications. These specifications are defined for .NET
platform and can transport the data in the Internet (there are not
limited within a local network as classical OPC specifications).
The possibility to expose not only pure data from the process
but also alarms, historical data, and commands to web services,
has led to a completely new approach, namely OPC Unified
Architecture specification [7]. This specification defines the
management of data from process, alarms, historical data, and
advanced functions in a single unified address space. In
addition to these new properties - platform independent and
unified data management - OPC UA introduces numerous
other properties, which include scalability, security on
unauthorized access, precautions regarding data loss and
support for complex data structures [7]. Example of SCADA
application based on OPC specification, in addition to
commercial solutions [11], can be found in [12] and [13].
Furthermore, on OPC Foundation site [4] is published a
complete list of manufacturers of OPC based SCADA
solutions.

CORBA (Common Object Request Broker Architecture) is
a middleware standard based on the client/server paradigm to
distribute data between heterogeneous applications in terms of
programming language and operating system used.
Specifications were developed by OMG consortium [14]
consisting of active companies in the industry. For real-time
distribution, there are defined RT-CORBA specifications that
can achieve a deterministic access to shared resources and can
apply multiple scheduling policies for multithreading
applications [8]. There are several open source
implementations of CORBA standard [9], namely TAO (The
ACE ORB), PolyOBB or MICO, and commercial
implementations, for example [9], VisBroker, ORBExpress and
e*ORB. Although this is currently not widely used, CORBA is
still a reliable solution for critical systems in the detriment
OPC-based systems [17]. For example, CORBA is still used
for data distribution in LHC Experiments' Control Systems
[18]. Example of SCADA application based on CORBA
implementations can be found in [15] and [16].

DDS (Data Distribution Service for Real-Time Systems) is
a middleware standard based on the publish/subscribe
paradigm to distribute data between heterogeneous applications
developed by OMG consortium [14]. An important feature of
this protocol is that it has facilities for implementing QoS
(Quality of Service) parameters in order to achieve real-time
performance. It is also data centric and allows anonymous
dissemination of information. Due to real-time facilities, this
protocol is used in critical systems to the detriment of OPC
based solutions. An interesting comparison between DDS and
OPC can be found in [19]. There are several open source

implementations of DDS standard [9], namely OpenDDS and
OpenSpilce, and commercial implementations [9], for example,
RTI-DDS. Example of SCADA application based on DDS
implementations can be found in [20] and [21].

III. PROPOSED SOLUTION

In this paper, it is proposed a solution for interoperability of
SCADA systems and distributed real-time and embedded
systems developed with different technologies in terms of
middleware used for data distribution. Therefore, to achieve
this goal, it is proposed a framework, which will further be
named MIOF (Middleware Inter-Operability Framework). The
architecture of solution selected in order to implement the
MIOF application is based on middleware objects and
connections between these objects. Each object encapsulates a
specific functionality depending on de middleware on which is
based. Each middleware object has a set of parameters (through
which the object can be defined and configured) and a set of
tags or data members (which behaves like input/output points).
Data members are actually tags that can be read and/or written
to the data server on which the middleware object is connected.
Logical architecture of such an object is shown in Fig. 1.

Through a standard interface defined in the MIOF
application, tags exposed by different middleware object can
be interconnected. This interface works on publish/subscribe
paradigm. A tag may publish the value that he received through
the specific middleware, and on this value can subscribe
several tags that work as inputs. It should also be taken into
account the data types of each tag and to make a conversion
where is necessary and possible. Tags that subscribe to a value
may apply different math operations on them. Therefore, in
order to determine the input value, a tag can subscribe to one or
more output tags and the obtained values can be used in a math
expression that is evaluated at each change of a tag that is used
in the math expression. In the defining operation of
connections between the tags of middleware objects, it must
take into account the access attributes of each tag (read only,
write only, or read-write). In addition to this attribute, each tag
has the following attributes: error code (similar to quality
defined in classic OPC specifications), timestamp (when the
value was produced), data type (logical, numeric, or text), and
the value of the tag. Fig. 1 presents the logical architecture of a
middleware object. As can be seen in Fig. 1, there is a data
server that retrieves data from the process and can send various
commands to actuators. These data are distributes by means of
a middleware system middleware (OPC DA, OPC UA, OPC
NET, TAO, or OpenDDS). Internal functionality of the server
deals with management of communication with devices
connected on fieldbuses. In order to communicate with these
devices, it may be used different converters (e.g. RS232-
RS485, USB-CAN) or server can be executed on embedded
devices, which have direct connectivity to fieldbuses.
Middleware objects take the address space of the server and
expose it in the MIOF application. An example of the address
space exposed in MIOF is shown in Fig. 1 (the address space is
specific to the data server used).

At the MIOF application level, the code of an object is
executed only when an event occurs or when a published value
changes its value.

483

Intranet/
Extranet/
Internet

Intranet/
Extranet/
Internet

Device 1

TAG 1_01

TAG 1_02

TAG 1_0n

Device 2

TAG 1_01

TAG 1_02

TAG 1_0n

Device n

Sp
e

ci
fi

c
M

ID
D

LE
W

A
R

E

In
te

rn
 o

b
je

ct
 f

u
n

ct
io

n
a

lit
y

St
a

n
d

a
rd

 in
te

rf
a

ce
 f

o
r

d
a

ta
 e

xp
o

se

Sp
e

ci
fi

c
M

ID
D

LE
W

A
R

E

RS232

Modbus

RS232/485
converter

USB

CANOpen

USB - CAN
converter

Field Devices/sensors

Intern data server
functionality

Fig. 1. Logical architecture of an middleware object.

MIOF application characteristics related to events are the
following:

 Application functionality is driven entirely by events.

 Middleware objects emit events when they received
from the data server a value of a tag.

 It is avoided the loop connection of the tag in order to
avoid recursive generation of the events.

 Objects remain inactive until an event occurs on one
of its connections.

 When an input tag is changed, the object will send the
changed value to the data server on which is
connected.

 Middleware objects allow the browse operation of the
address space of server they connect to.

 The middleware object will perform the necessary
operations in order to update only the tags that have at
least one subscription (it do not update data that is not
consumed by anyone).

This operating approach of the application consumes much
less CPU time than a solution based on pending in the loop the
change of the input signals (changing / updating tags from the
data servers). The interconnection way of objects is presented
in Fig. 2. It can be noted that a tag can subscribe to multiple
tags that are placed in an arithmetic expression to obtain the
final value.

The application is designed and developed in C#, and the
standard interface is represented by a base object (implemented
by a class named BaseObject) from which are derived the
middleware objects. The base object defines methods used to
save and restore specific parameters of the object in an XML,
functions used to perform the browse operation over the
address space, a function to read a list of tags, a function to
write a list of tags, and a delegated that is called by the object
when it is needed to update (publish) the tags values in the
MIOF environment. Each object is developed as a library,
which exposes a class derived from the BaseObject class. In
the MIOF application, it is used an implementation artifice in
the form an adapter object (an instance of a class) that is
attached to an object middleware (that implements the standard
BaseObject interface) by the user when it create a new object.
This method avoids the redundant implementation of the
common functionalities at the level of each middleware object
derived from the base object. Within this adapter, the
management of the connections of the attached middleware
object is performed. A connection is described by the following
information:

 A handle of a tag/data member that has connections
(which is connected to at least a data member of
another middleware object in the MIOF environment
directly or through a math expression).

 A list of objects that must be notified when the data
member is changing. Each item in the list will be a
structure that contains an object handle and a list of
tags handlers that must be notified by the object.

484

Object
name

Tags

Object
name

Tags

Object
name

Tags

Object
name

Tags

Publish/Subscribe enviroment

Fig. 2. The interconnection way of middleware objects.

The adapter contains a list of connections for the attached
middleware object. This method simplifies the integration of
new types of middleware objects. At this moment, there are
implemented middleware objects for the OPC DA, OPC. NET,
OPC UA, and TAO, and the middleware object for the
OpenDDS implementation of the DDS standard in the
development stage.

A. The OPC DA Object

The purpose of the OPC DA object is to perform the
connection between the servers based on classical OPC DA
specifications and the MIOF application. Therefore, this object
implements two interfaces: interface defined for the objects
from MIOF application and the interface for OPC DA data
server. In terms of internal functionality, this object
implements a wrapper that performs the interconnection of the
two interfaces of the OPC DA object. In order to implement the
OPC DA interface were used RCW (Runtime Callable
Wrappers) components that manage the COM methods calls in
.NET based applications. These methods are free components
distributed by the OPC Foundation

Fig. 3. The proprities of the OPC DA object.

When an OPC DA object is created in the MIOF
environment, it must be set the specific properties of the object,
namely: OPC DA server on which it connects, the deadband of
the group created by this object, and the refresh rate of the OPC
DA group. After setting these parameters, the object will
connect to the OPC DA server and create a group with the
properties that have been set, group that contains no tag.

When a connection is made between every member of the
OPC DA object (tag from the OPC server on which it is
connected) and another object from MIOF (may be even other
OPC DA object), then the tag will be added to the group
associated to the OPC DA object. When it is deleted a
connection that is made with a data member of the OPC DA
object, then it will delete the item that corresponds to that date
member (only if the data member is not used to make other
connections). There will be no limit of OPC DA object that can
be created in the MIOP application. Fig. 3 presents the window
used to set the properties of the OPC DA object.

B. The OPC .NET Object

The aim of the OPC.NET object is to perform
communication with the servers based on OPC.NET
specifications and MIOF application. When it is created an
OPC.NET object, it must be set the specific properties of the
object, namely: the host where runs the NET OPC server on
which it connects, deadband and refresh rate for the list created
by this object in the server, communication protocol used (TCP
or HTTP), port used, and authentication information such as
user name and password associated (if the server needs this
data to allow the access). After setting these proprieties, the
object will connect to the OPC.NET server and create a list
(structure defined by the OPC.NET specifications) with
properties that have been set (the list contains no tag).

When a connection is made between every tag of the
OPC.NET and another tag from MIOF application (may be
even other OPC object) then the tag will be added to the list.
There is no limit of OPC.NET object that can be created in the
MIOF application. In Fig. 4 is presented the window used to
set the properties of the OPC .NET object. Fig. 4 presents the
window used to set the properties of the OPC DA object.

Fig. 4. The proprities of the OPC.NET object.

485

C. The OPC UA Object

The aim of the OPC UA object is to perform
communication with the servers based on OPC UA
specifications and MIOF application. When it is created an
OPC UA object, it must be set the specific properties of the
object, namely: host where the OPC UA server runs, deadband
for subscription created on this object on the OPC UA server
(structure defined in the OPC UA specifications), the refresh
rate of the associated subscription, the protocol used for
communication (TCP or HTTP) and authentication data used to
access the OPC UA server. After setting these parameters, the
object will connect to the OPC UA server and create a
subscription with the properties that have been set. When is
performed a connection between a tag of the OPC UA
object(tag from the address space of the OPC UA server) and
another object from the MIOF application (may be even an
OPC UA object) then it will add the tag to the associated
subscription. There is no limit of OPC UA object that can be
created in the application MFIOP. OPC UA object can create a
single subscription in the OP UA server. If it is wanted the
creation of another subscription with different parameters, then
it must create a new OPC UA object. Fig. 5 presents the
window used to set the properties of the OPC DA object.

Fig. 5. The proprities of the OPC UA object.

D. The TAO Object

TAO object connects the MIOF application with the TAO
servers presented in [22]. When a TAO object is created, it
must set the properties of the object, namely the host where the
TAO server runs, the protocol used for communication (GIOP,
SSLIOP, and ZIOP) deadband and refresh rate of the group
created in the server by the object. Moreover, in this case, there
is no limit of TAO objects that can be created. It can be created
multiple TAO objects that connect to the same server, but with
different parameters for the associated group (deadband and
refresh rate). Because the TAO middleware is developed in
C++, it was developed a wrapper in order to call the functions
of TAO middleware from the .NET based application. Fig. 6
presents the window used to set the properties of the OPC DA
object.

Fig. 6. The proprities of the TAO object.

E. The OpenDDS Object

OpenDDS object is currently in development and
implementation stage. This object will expose in the MIOF
environment the address space of the DDS domain on which
can connect. Each instance of the OpenDDS objects can
connect to only one DDS domain in terms of available QoS
parameters. In order to develop this object, it was chosen the
OpenDDS implementation of the DDS standard because it is an
open-source solution and is developed based on the TAO
middleware.

IV. FUTURE WORK

As future work, it can be developed objects that will take
the address space of the MIOF environment, and they can
distribute it through a specific middleware. Thus, it can be
created OPC UA, OPC. NET and OPC UA objects that work as
servers, and they expose the address space of the MIOF
environment. By this method, the HMI applications can
connect to these objects to retrieve data and display them in a
specific graphical manner.

V. CONCLUSION

This article has presented a solution for interoperability of
SCADA system developed over different technologies in terms
of middleware used to distribute data acquired from monitored
and/or controlled industrial processes. The solution allows the
interconnection tags directly or by applying math expressions.
Simplifying, the proposed solution operates on the
publish/subscribe paradigm in the sense that the data produced
by a tag can be consumed by more tags. In the proposed MIOF
application, it can be easily introduced new objects that can
retrieve data through a specific middleware or other methods
such as service-oriented applications. Furthermore, it can be
developed objects that read data directly from fieldbuses and
publish them in the MIOF environment.

486

ACKNOWLEDGMENT

This paper was supported by the project “Sustainable
performance in doctoral and post-doctoral research
PERFORM–Contract no. POSDRU/159/1.5/S/138963”, project
co-funded from European Social Fund through Sectorial
Operational Program Human Resources 2007-2013.

REFERENCES

[1] S. A. Boyer, SCADA: supervisory control and data acquisition, 4rd ed.,
International Society of Automation, 2009.

[2] R. Krutz, Securing SCADA Systems, ISBN-10: 0-7645-9787-6, Wiley,
2006.

[3] V.G. Gaitan, N. C. Gaitan, I. Ungurean, “A flexible acquisition cycle for
incompletely defined fieldbus protocols,” ISA Transactions, vol. 53,
Issue 3, pp. 776-786, May 2014.

[4] OPC Foundation, https://opcfoundation.org/

[5] F. Iwanitz and J. Lange H. Fachverlag, OPC—Fundamentals,
Implementation and Application, Huthig, 2006.

[6] The Express Interface delivers secure and reliable real-time and
historical data communication, http://expressinterface.com/.

[7] W. Mahnke , S.-H. Leitner , M. Damm, OPC Unified Architecture,
Springer Publishing Company, 2009.

[8] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill, “TAO:
A Pattern-Oriented Object Request Broker for Distributed Real-time and
Embedded Systems,” IEEE Distributed Systems Online, vol. 3, no. 2,
February 2002.

[9] H. Perez, J.J. Gutierrez, "A survey on Standards for real-time
distribution middleware," Journal ACM Computing Surveys, vol. 46,
issue 4, March 2014.

[10] S. Vinoski, "Advanced Message Queuing Protocol," Internet
Computing, IEEE , vol.10, no.6, pp.87-89, Nov.-Dec. 2006.

[11] HMI Software & SCADA Software Manufacturers,
http://www.automation.com/suppliers/automation-product-
manufacturers/product-category/hmi-software-scada-software

[12] A. Girbea, C. Suciu, S. Nechifor, F., Sisak, "Design and Implementation
of a Service-Oriented Architecture for the Optimization of Industrial
Applications," Industrial Informatics, IEEE Transactions on , vol.10,
no.1, pp.185-196, Feb. 2014

[13] S. Back, S. B. Kranzer, T. J. Heistracher, T. J. Lampoltshammer,
"Bridging SCADA systems and GI systems," Internet of Things (WF-
IoT), 2014 IEEE World Forum on, pp.41-44, March 2014

[14] Object Management Group, http://www.omg.org/

[15] S. S. Andrade and R. J. Macêdo, “Real-Time Component Software For
Flexible And Interoperable Automation Systems,” Anais do XII
Congresso Brasileiro de Automática (XII CBA), 1, pp. 3014-3019, 2006.

[16] S. S. Andrade and R. J. Macêdo, “Using Real-Time Components to
Construct Supervision and Control Applications,” 8th Brazilian
Workshop on Real-Time Systems - Work-in-Progress Paper. Curitiba -
PR, 2006.

[17] D. C. Schmidt, “Future of CORBA for Distributed
Real-time & Embedded Systems,” ICALEPCS 2014,
http://www.dre.vanderbilt.edu/~schmidt/ICALEPCS.ppt, 2014.

[18] C. Gaspar, "An Overview of the LHC Experiments' Control Systems,"
Proceedings of ICALEPCS 2013, San Francisco, CA, USA, 2013

[19] Comparison of OPC and DDS – RTI,
https://www.rti.com/docs/RTI_DDS_and_OPC.pdf

[20] P. L. Martínez, L. Barros, J. M. Drake, “Design of component-based
real-time applications,” Journal of Systems and Software, Vol. 86, Issue
2, pp. 449-467, February 2013.

[21] Best-Practices Data-Centric Programming: Using DDS to Integrate
Real-World Systems,
https://www.rti.com/docs/DDS_Best_Practices_WP.pdf

[22] E. Tatulescu, A. V. Smolenic, and V. G. Gaitan. "An Architectural
Model of a CORBA based Data Server for SCADA Systems,"
International Journal of Academic Research, vol.5, no. 2, 2013.

487

On behalf of the Program Committee, it gives me great pleasure to invite you to participate

in the 18th International Conference on System Theory, Control and Computing ICSTCC

2014 which will be held at the Rina Sinaia Hotel, Sinaia, ROMANIA, during October 17 -

19, 2014.

The ICSTCC 2014 is technically co-sponsored by the IEEE Control Systems Society (CSS).

The Proceedings will be published in the IEEE Xplore Digital Library and will be

submitted for indexing in the Conference Proceedings Citation Index.

Your paper submitted to the ICSTCC 2014 has been accepted for presentation by the

conference. As indicated in the notification letter sent to you about your paper’s acceptance,

at least one author of your paper must attend the conference to present the paper. We hope

that you will participate in this scientific meeting.

Acceptance of your paper for presentation does not, in any way, financially oblige ICSTCC

2014 for the expenses incurred by you to travel and attend the conference. If you have any

questions, please contact us at icstcc2014@ac.tuiasi.ro.

WARNING: Depending on your citizenship, you may require visa to enter Romania. For

additional information about visa and travel authorization, please visit the following

website: http://www.mae.ro/en/node/2040

Thank you in advance for your participation. I look forward to seeing you in Sinaia.

Sincerely,

Prof. Mihail Voicu, General Chair of the ICSTCC 2014

Accepted Paper details:

November 3, 2014
Mr. Ioan Ungurean
Stefan cel Mare University of Suceava
Suceava, Romania
720229 Suceava
Romania

Dear Mr. Ioan Ungurean,

Ioan Ungurean, Nicoleta Cristina Gaitan, Vasile Gheorghita Gaitan, "Transparent Interaction of SCADA Systems
Developed Over Different Technologies." Scheduled for presentation on Saturday October 18, 2014, 11:30-11:50
hrs.

lcsTcc 20L4

Certificate of Attendance

' This certificate is awarded to

loan Ungurean

from ;,

Stefan cel Mare University of Suceava
Romania

for attending the
18th International Conference on

System Theory, Control and Computing
Sinaia, Romania

October L7-19,2OL4

/1,/;
Mihail VOICU

General Chair of ICSTCC 201 4

